logo
0
0
WeChat Login
feat: 添加学生管理系统核心功能

Github Stars GitHub release (latest by date including pre-releases) codecov Gitter Discord

makesense.ai


make sense logo

makesense.ai is a free-to-use online tool for labeling photos. Thanks to the use of a browser it does not require any complicated installation - just visit the website and you are ready to go. It also doesn't matter which operating system you're running on - we do our best to be truly cross-platform. It is perfect for small computer vision deep learning projects, making the process of preparing a dataset much easier and faster. Prepared labels can be downloaded in one of the multiple supported formats. The application was written in TypeScript and is based on React/Redux duo, powered by Vite for fast development and optimized builds.

📄 Documentation

You can find out more about our tool from the newly released documentation - still under 🚧 construction. Let us know what topics we should cover first.

🤖 Advanced AI integrations

makesense.ai strives to significantly reduce the time you have to spend on photo labeling. We are doing our best to integrate the latest and greatest AI models, that can give you recommendations as well as automate repetitive and tedious activities.

  • YOLOv5 is our most powerful integration yet. Thanks to the use of yolov5js you can load not only pretrained models from yolov5js-zoo, but above all your own models trained thanks to YOLOv5 and exported to tfjs format.
  • SSD pretrained on the COCO dataset, which will do some of the work for you in drawing bounding boxes on photos and also (in some cases) suggest a label.
  • PoseNet is a vision model that can be used to estimate the pose of a person in an image or video by estimating where key body joints are.

The engine that drives our AI functionalities is TensorFlow.js - JS version of the most popular framework for training neural networks. This choice allows us not only to speed up your work but also to care about the privacy of your data, because unlike with other commercial and open-source tools, your photos do not have to be transferred to the server. This time AI comes to your device!

https://user-images.githubusercontent.com/26109316/193255987-2d01c549-48c3-41ae-87e9-e1b378968966.mov

💻 Local Setup

# clone repository git clone https://github.com/SkalskiP/make-sense.git # navigate to main dir cd make-sense # install dependencies npm install # serve with hot reload at localhost:3000 npm run dev # or alternatively npm start

To ensure proper functionality of the application locally, npm 8.x.x and node.js v18.x.x or higher versions are required. The project now uses Vite as the build tool for faster development and better performance.

🐳 Docker Setup

# Build Docker Image docker build -t make-sense -f docker/Dockerfile . # Run Docker Image as Service docker run -dit -p 3000:3000 --restart=always --name=make-sense make-sense # Get Docker Container Logs docker logs make-sense # Access make-sense: http://localhost:3000/

⌨️ Keyboard Shortcuts

FunctionalityContextMacWindows / Linux
Polygon autocompleteEditorEnterEnter
Cancel polygon drawingEditorEscapeEscape
Delete currently selected labelEditorBackspaceDelete
Load previous imageEditor + LeftCtrl + Left
Load next imageEditor + RightCtrl + Right
Zoom inEditor + +Ctrl + +
Zoom outEditor + -Ctrl + -
Move imageEditorUp / Down / Left / RightUp / Down / Left / Right
Select LabelEditor + 0-9Ctrl + 0-9
Exit popupPopupEscapeEscape

Table 1. Supported keyboard shortcuts

⬆️ Export Formats

CSVYOLOVOC XMLVGG JSONCOCO JSONPIXEL MASK
Point
Line
Rect
Polygon
Label

Table 2. The matrix of supported labels export formats, where:

  • ✓ - supported format
  • ☐ - not yet supported format
  • ✗ - format does not make sense for a given label type

You can find examples of export files along with a description and schema on our Wiki.

⬇️ Import Formats

CSVYOLOVOC XMLVGG JSONCOCO JSONPIXEL MASK
Point
Line
Rect
Polygon
Label

Table 3. The matrix of supported labels import formats

  • ✓ - supported format
  • ☐ - not yet supported format
  • ✗ - format does not make sense for a given label type

🔐 Privacy

We don't store your images, because we don't send them anywhere in the first place.

🚀 Tutorials

If you are just starting your adventure with deep learning and would like to learn and create something cool along the way, makesense.ai can help you with that. Leverage our bounding box labeling functionality to prepare a data set and use it to train your first state-of-the-art object detection model. Follow instructions and examples but most importantly, free your creativity.

🏆 Contribution

💬 Citation

Please cite Make Sense in your publications if this is useful for your research. Here is an example BibTeX entry:

@MISC{make-sense, author = {Piotr Skalski}, title = {{Make Sense}}, howpublished = "\url{https://github.com/SkalskiP/make-sense/}", year = {2019}, }

🪧 License

This project is licensed under the GPL-3.0 License - see the LICENSE file for details. Copyright © 2019 Piotr Skalski.