/* * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace keymaster { PureSoftKeymasterContext::PureSoftKeymasterContext(KmVersion version, keymaster_security_level_t security_level) : SoftAttestationContext(version), rsa_factory_(new (std::nothrow) RsaKeyFactory(*this /* blob_maker */, *this /* context */)), ec_factory_(new (std::nothrow) EcKeyFactory(*this /* blob_maker */, *this /* context */)), aes_factory_(new (std::nothrow) AesKeyFactory(*this /* blob_maker */, *this /* random_source */)), tdes_factory_(new (std::nothrow) TripleDesKeyFactory(*this /* blob_maker */, *this /* random_source */)), hmac_factory_(new (std::nothrow) HmacKeyFactory(*this /* blob_maker */, *this /* random_source */)), os_version_(0), os_patchlevel_(0), soft_keymaster_enforcement_(64, 64), security_level_(security_level) { // We're pretending to be some sort of secure hardware which supports secure key storage, // this must only be used for testing. if (security_level != KM_SECURITY_LEVEL_SOFTWARE) { pure_soft_secure_key_storage_ = std::make_unique(64); } if (version >= KmVersion::KEYMINT_1) { pure_soft_remote_provisioning_context_ = std::make_unique(security_level_); } } PureSoftKeymasterContext::~PureSoftKeymasterContext() {} keymaster_error_t PureSoftKeymasterContext::SetSystemVersion(uint32_t os_version, uint32_t os_patchlevel) { os_version_ = os_version; os_patchlevel_ = os_patchlevel; if (pure_soft_remote_provisioning_context_ != nullptr) { pure_soft_remote_provisioning_context_->SetSystemVersion(os_version, os_patchlevel); } return KM_ERROR_OK; } void PureSoftKeymasterContext::GetSystemVersion(uint32_t* os_version, uint32_t* os_patchlevel) const { *os_version = os_version_; *os_patchlevel = os_patchlevel_; } keymaster_error_t PureSoftKeymasterContext::SetVerifiedBootInfo(std::string_view boot_state, std::string_view bootloader_state, const std::vector& vbmeta_digest) { if (verified_boot_state_.has_value() && boot_state != verified_boot_state_.value()) { return KM_ERROR_INVALID_ARGUMENT; } if (bootloader_state_.has_value() && bootloader_state != bootloader_state_.value()) { return KM_ERROR_INVALID_ARGUMENT; } if (vbmeta_digest_.has_value() && vbmeta_digest != vbmeta_digest_.value()) { return KM_ERROR_INVALID_ARGUMENT; } verified_boot_state_ = boot_state; bootloader_state_ = bootloader_state; vbmeta_digest_ = vbmeta_digest; if (pure_soft_remote_provisioning_context_ != nullptr) { pure_soft_remote_provisioning_context_->SetVerifiedBootInfo(boot_state, bootloader_state, vbmeta_digest); } return KM_ERROR_OK; } keymaster_error_t PureSoftKeymasterContext::SetVendorPatchlevel(uint32_t vendor_patchlevel) { if (vendor_patchlevel_.has_value() && vendor_patchlevel != vendor_patchlevel_.value()) { // Can't set patchlevel to a different value. return KM_ERROR_INVALID_ARGUMENT; } vendor_patchlevel_ = vendor_patchlevel; if (pure_soft_remote_provisioning_context_ != nullptr) { pure_soft_remote_provisioning_context_->SetVendorPatchlevel(vendor_patchlevel); } return KM_ERROR_OK; } keymaster_error_t PureSoftKeymasterContext::SetBootPatchlevel(uint32_t boot_patchlevel) { if (boot_patchlevel_.has_value() && boot_patchlevel != boot_patchlevel_.value()) { // Can't set patchlevel to a different value. return KM_ERROR_INVALID_ARGUMENT; } boot_patchlevel_ = boot_patchlevel; if (pure_soft_remote_provisioning_context_ != nullptr) { pure_soft_remote_provisioning_context_->SetBootPatchlevel(boot_patchlevel); } return KM_ERROR_OK; } KeyFactory* PureSoftKeymasterContext::GetKeyFactory(keymaster_algorithm_t algorithm) const { switch (algorithm) { case KM_ALGORITHM_RSA: return rsa_factory_.get(); case KM_ALGORITHM_EC: return ec_factory_.get(); case KM_ALGORITHM_AES: return aes_factory_.get(); case KM_ALGORITHM_TRIPLE_DES: return tdes_factory_.get(); case KM_ALGORITHM_HMAC: return hmac_factory_.get(); default: return nullptr; } } static keymaster_algorithm_t supported_algorithms[] = {KM_ALGORITHM_RSA, KM_ALGORITHM_EC, KM_ALGORITHM_AES, KM_ALGORITHM_HMAC}; keymaster_algorithm_t* PureSoftKeymasterContext::GetSupportedAlgorithms(size_t* algorithms_count) const { *algorithms_count = array_length(supported_algorithms); return supported_algorithms; } OperationFactory* PureSoftKeymasterContext::GetOperationFactory(keymaster_algorithm_t algorithm, keymaster_purpose_t purpose) const { KeyFactory* key_factory = GetKeyFactory(algorithm); if (!key_factory) return nullptr; return key_factory->GetOperationFactory(purpose); } keymaster_error_t PureSoftKeymasterContext::CreateKeyBlob(const AuthorizationSet& key_description, const keymaster_key_origin_t origin, const KeymasterKeyBlob& key_material, KeymasterKeyBlob* blob, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) const { // Check whether the key blob can be securely stored by pure software secure key storage. bool canStoreBySecureKeyStorageIfRequired = false; if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE && pure_soft_secure_key_storage_ != nullptr) { pure_soft_secure_key_storage_->HasSlot(&canStoreBySecureKeyStorageIfRequired); } bool needStoreBySecureKeyStorage = false; if (key_description.GetTagValue(TAG_ROLLBACK_RESISTANCE)) { needStoreBySecureKeyStorage = true; if (!canStoreBySecureKeyStorageIfRequired) return KM_ERROR_ROLLBACK_RESISTANCE_UNAVAILABLE; } if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE) { // We're pretending to be some sort of secure hardware. Put relevant tags in hw_enforced. for (auto& entry : key_description) { switch (entry.tag) { case KM_TAG_PURPOSE: case KM_TAG_ALGORITHM: case KM_TAG_KEY_SIZE: case KM_TAG_RSA_PUBLIC_EXPONENT: case KM_TAG_BLOB_USAGE_REQUIREMENTS: case KM_TAG_DIGEST: case KM_TAG_PADDING: case KM_TAG_BLOCK_MODE: case KM_TAG_MIN_SECONDS_BETWEEN_OPS: case KM_TAG_MAX_USES_PER_BOOT: case KM_TAG_USER_SECURE_ID: case KM_TAG_NO_AUTH_REQUIRED: case KM_TAG_AUTH_TIMEOUT: case KM_TAG_CALLER_NONCE: case KM_TAG_MIN_MAC_LENGTH: case KM_TAG_KDF: case KM_TAG_EC_CURVE: case KM_TAG_ECIES_SINGLE_HASH_MODE: case KM_TAG_USER_AUTH_TYPE: case KM_TAG_ORIGIN: case KM_TAG_OS_VERSION: case KM_TAG_OS_PATCHLEVEL: case KM_TAG_EARLY_BOOT_ONLY: case KM_TAG_UNLOCKED_DEVICE_REQUIRED: case KM_TAG_RSA_OAEP_MGF_DIGEST: case KM_TAG_ROLLBACK_RESISTANCE: hw_enforced->push_back(entry); break; case KM_TAG_USAGE_COUNT_LIMIT: // Enforce single use key with usage count limit = 1 into secure key storage. if (canStoreBySecureKeyStorageIfRequired && entry.integer == 1) { needStoreBySecureKeyStorage = true; hw_enforced->push_back(entry); } break; default: break; } } } keymaster_error_t error = SetKeyBlobAuthorizations(key_description, origin, os_version_, os_patchlevel_, hw_enforced, sw_enforced, GetKmVersion()); if (error != KM_ERROR_OK) return error; error = ExtendKeyBlobAuthorizations(hw_enforced, sw_enforced, vendor_patchlevel_, boot_patchlevel_); if (error != KM_ERROR_OK) return error; AuthorizationSet hidden; error = BuildHiddenAuthorizations(key_description, &hidden, softwareRootOfTrust); if (error != KM_ERROR_OK) return error; error = SerializeIntegrityAssuredBlob(key_material, hidden, *hw_enforced, *sw_enforced, blob); if (error != KM_ERROR_OK) return error; // Pretend to be some sort of secure hardware that can securely store the key blob. if (!needStoreBySecureKeyStorage) return KM_ERROR_OK; km_id_t keyid; if (!soft_keymaster_enforcement_.CreateKeyId(*blob, &keyid)) return KM_ERROR_UNKNOWN_ERROR; assert(needStoreBySecureKeyStorage && canStoreBySecureKeyStorageIfRequired); return pure_soft_secure_key_storage_->WriteKey(keyid, *blob); } keymaster_error_t PureSoftKeymasterContext::UpgradeKeyBlob(const KeymasterKeyBlob& key_to_upgrade, const AuthorizationSet& upgrade_params, KeymasterKeyBlob* upgraded_key) const { UniquePtr key; keymaster_error_t error = ParseKeyBlob(key_to_upgrade, upgrade_params, &key); if (error != KM_ERROR_OK) return error; return FullUpgradeSoftKeyBlob(key, os_version_, os_patchlevel_, vendor_patchlevel_, boot_patchlevel_, upgrade_params, upgraded_key); } keymaster_error_t PureSoftKeymasterContext::ParseKeyBlob(const KeymasterKeyBlob& blob, const AuthorizationSet& additional_params, UniquePtr* key) const { // This is a little bit complicated. // // The SoftKeymasterContext has to handle a lot of different kinds of key blobs. // // 1. New keymaster1 software key blobs. These are integrity-assured but not encrypted. The // raw key material and auth sets should be extracted and returned. This is the kind // produced by this context when the KeyFactory doesn't use keymaster0 to back the keys. // // 2. Old keymaster1 software key blobs. These are OCB-encrypted with an all-zero master key. // They should be decrypted and the key material and auth sets extracted and returned. // // 3. Old keymaster0 software key blobs. These are raw key material with a small header tacked // on the front. They don't have auth sets, so reasonable defaults are generated and // returned along with the raw key material. // // Determining what kind of blob has arrived is somewhat tricky. What helps is that // integrity-assured and OCB-encrypted blobs are self-consistent and effectively impossible to // parse as anything else. Old keymaster0 software key blobs have a header. It's reasonably // unlikely that hardware keys would have the same header. So anything that is neither // integrity-assured nor OCB-encrypted and lacks the old software key header is assumed to be // keymaster0 hardware. AuthorizationSet hw_enforced; AuthorizationSet sw_enforced; KeymasterKeyBlob key_material; keymaster_error_t error; auto constructKey = [&, this]() mutable -> keymaster_error_t { // GetKeyFactory if (error != KM_ERROR_OK) return error; keymaster_algorithm_t algorithm; if (!hw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm) && !sw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm)) { return KM_ERROR_INVALID_ARGUMENT; } // Pretend to be some sort of secure hardware that can securely store // the key blob. Check the key blob is still securely stored now. if (hw_enforced.Contains(KM_TAG_ROLLBACK_RESISTANCE) || hw_enforced.Contains(KM_TAG_USAGE_COUNT_LIMIT)) { if (pure_soft_secure_key_storage_ == nullptr) return KM_ERROR_INVALID_KEY_BLOB; km_id_t keyid; bool exists; if (!soft_keymaster_enforcement_.CreateKeyId(blob, &keyid)) return KM_ERROR_INVALID_KEY_BLOB; error = pure_soft_secure_key_storage_->KeyExists(keyid, &exists); if (error != KM_ERROR_OK || !exists) return KM_ERROR_INVALID_KEY_BLOB; } auto factory = GetKeyFactory(algorithm); return factory->LoadKey(std::move(key_material), additional_params, std::move(hw_enforced), std::move(sw_enforced), key); }; AuthorizationSet hidden; error = BuildHiddenAuthorizations(additional_params, &hidden, softwareRootOfTrust); if (error != KM_ERROR_OK) return error; // Assume it's an integrity-assured blob (new software-only blob, or new keymaster0-backed // blob). error = DeserializeIntegrityAssuredBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced); if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey(); // Wasn't an integrity-assured blob. Maybe it's an auth-encrypted blob. error = ParseAuthEncryptedBlob(blob, hidden, &key_material, &hw_enforced, &sw_enforced); if (error == KM_ERROR_OK) LOG_D("Parsed an old keymaster1 software key", 0); if (error != KM_ERROR_INVALID_KEY_BLOB) return constructKey(); // Wasn't an auth-encrypted blob. Maybe it's an old softkeymaster blob. error = ParseOldSoftkeymasterBlob(blob, &key_material, &hw_enforced, &sw_enforced); if (error == KM_ERROR_OK) LOG_D("Parsed an old sofkeymaster key", 0); return constructKey(); } keymaster_error_t PureSoftKeymasterContext::DeleteKey(const KeymasterKeyBlob& blob) const { // Pretend to be some secure hardware with secure storage. if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE && pure_soft_secure_key_storage_ != nullptr) { km_id_t keyid; if (!soft_keymaster_enforcement_.CreateKeyId(blob, &keyid)) return KM_ERROR_UNKNOWN_ERROR; return pure_soft_secure_key_storage_->DeleteKey(keyid); } // Otherwise, nothing to do for software-only contexts. return KM_ERROR_OK; } keymaster_error_t PureSoftKeymasterContext::DeleteAllKeys() const { // Pretend to be some secure hardware with secure storage. if (GetSecurityLevel() != KM_SECURITY_LEVEL_SOFTWARE && pure_soft_secure_key_storage_ != nullptr) { return pure_soft_secure_key_storage_->DeleteAllKeys(); } // Otherwise, nothing to do for software-only contexts. return KM_ERROR_OK; } keymaster_error_t PureSoftKeymasterContext::AddRngEntropy(const uint8_t* buf, size_t length) const { if (length > 2 * 1024) { // At most 2KiB is allowed to be added at once. return KM_ERROR_INVALID_INPUT_LENGTH; } // XXX TODO according to boringssl openssl/rand.h RAND_add is deprecated and does // nothing RAND_add(buf, length, 0 /* Don't assume any entropy is added to the pool. */); return KM_ERROR_OK; } CertificateChain PureSoftKeymasterContext::GenerateAttestation(const Key& key, // const AuthorizationSet& attest_params, // UniquePtr attest_key, const KeymasterBlob& issuer_subject, keymaster_error_t* error) const { if (!error) return {}; *error = KM_ERROR_OK; keymaster_algorithm_t key_algorithm; if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) { *error = KM_ERROR_UNKNOWN_ERROR; return {}; } if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) { *error = KM_ERROR_INCOMPATIBLE_ALGORITHM; return {}; } if (attest_params.GetTagValue(TAG_DEVICE_UNIQUE_ATTESTATION)) { *error = KM_ERROR_UNIMPLEMENTED; return {}; } // We have established that the given key has the correct algorithm, and because this is the // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast. const AsymmetricKey& asymmetric_key = static_cast(key); AttestKeyInfo attest_key_info(attest_key, &issuer_subject, error); if (*error != KM_ERROR_OK) return {}; return generate_attestation(asymmetric_key, attest_params, std::move(attest_key_info), *this, error); } CertificateChain PureSoftKeymasterContext::GenerateSelfSignedCertificate( const Key& key, const AuthorizationSet& cert_params, bool fake_signature, keymaster_error_t* error) const { keymaster_algorithm_t key_algorithm; if (!key.authorizations().GetTagValue(TAG_ALGORITHM, &key_algorithm)) { *error = KM_ERROR_UNKNOWN_ERROR; return {}; } if ((key_algorithm != KM_ALGORITHM_RSA && key_algorithm != KM_ALGORITHM_EC)) { *error = KM_ERROR_INCOMPATIBLE_ALGORITHM; return {}; } // We have established that the given key has the correct algorithm, and because this is the // SoftKeymasterContext we can assume that the Key is an AsymmetricKey. So we can downcast. const AsymmetricKey& asymmetric_key = static_cast(key); return generate_self_signed_cert(asymmetric_key, cert_params, fake_signature, error); } keymaster::Buffer PureSoftKeymasterContext::GenerateUniqueId(uint64_t creation_date_time, const keymaster_blob_t& application_id, bool reset_since_rotation, keymaster_error_t* error) const { *error = KM_ERROR_OK; // The default implementation fakes the hardware bound key with an arbitrary 128-bit value. // Any real implementation must follow the guidance from the interface definition // hardware/interfaces/security/keymint/aidl/android/hardware/security/keymint/Tag.aidl: // "..a unique hardware-bound secret known to the secure environment and never revealed by it. // The secret must contain at least 128 bits of entropy and be unique to the individual device" const std::vector fake_hbk = {'M', 'u', 's', 't', 'B', 'e', 'R', 'a', 'n', 'd', 'o', 'm', 'B', 'i', 't', 's'}; Buffer unique_id; *error = keymaster::generate_unique_id(fake_hbk, creation_date_time, application_id, reset_since_rotation, &unique_id); return unique_id; } static keymaster_error_t TranslateAuthorizationSetError(AuthorizationSet::Error err) { switch (err) { case AuthorizationSet::OK: return KM_ERROR_OK; case AuthorizationSet::ALLOCATION_FAILURE: return KM_ERROR_MEMORY_ALLOCATION_FAILED; case AuthorizationSet::MALFORMED_DATA: return KM_ERROR_UNKNOWN_ERROR; } return KM_ERROR_OK; } keymaster_error_t PureSoftKeymasterContext::UnwrapKey( const KeymasterKeyBlob& wrapped_key_blob, const KeymasterKeyBlob& wrapping_key_blob, const AuthorizationSet& /* wrapping_key_params */, const KeymasterKeyBlob& masking_key, AuthorizationSet* wrapped_key_params, keymaster_key_format_t* wrapped_key_format, KeymasterKeyBlob* wrapped_key_material) const { keymaster_error_t error = KM_ERROR_OK; if (!wrapped_key_material) return KM_ERROR_UNEXPECTED_NULL_POINTER; // Parse wrapped key data KeymasterBlob iv; KeymasterKeyBlob transit_key; KeymasterKeyBlob secure_key; KeymasterBlob tag; KeymasterBlob wrapped_key_description; error = parse_wrapped_key(wrapped_key_blob, &iv, &transit_key, &secure_key, &tag, wrapped_key_params, wrapped_key_format, &wrapped_key_description); if (error != KM_ERROR_OK) return error; UniquePtr key; auto wrapping_key_params = AuthorizationSetBuilder() .RsaEncryptionKey(2048, 65537) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_OAEP) .Authorization(TAG_PURPOSE, KM_PURPOSE_WRAP) .build(); error = ParseKeyBlob(wrapping_key_blob, wrapping_key_params, &key); if (error != KM_ERROR_OK) return error; // Ensure the wrapping key has the right purpose if (!key->hw_enforced().Contains(TAG_PURPOSE, KM_PURPOSE_WRAP) && !key->sw_enforced().Contains(TAG_PURPOSE, KM_PURPOSE_WRAP)) { return KM_ERROR_INCOMPATIBLE_PURPOSE; } auto operation_factory = GetOperationFactory(KM_ALGORITHM_RSA, KM_PURPOSE_DECRYPT); if (!operation_factory) return KM_ERROR_UNKNOWN_ERROR; AuthorizationSet out_params; OperationPtr operation( operation_factory->CreateOperation(std::move(*key), wrapping_key_params, &error)); if (!operation.get()) return error; error = operation->Begin(wrapping_key_params, &out_params); if (error != KM_ERROR_OK) return error; Buffer input; Buffer output; if (!input.Reinitialize(transit_key.key_material, transit_key.key_material_size)) { return KM_ERROR_MEMORY_ALLOCATION_FAILED; } error = operation->Finish(wrapping_key_params, input, Buffer() /* signature */, &out_params, &output); if (error != KM_ERROR_OK) return error; // decrypt the encrypted key material with the transit key KeymasterKeyBlob key_material = {output.peek_read(), output.available_read()}; // XOR the transit key with the masking key if (key_material.key_material_size != masking_key.key_material_size) { return KM_ERROR_INVALID_ARGUMENT; } for (size_t i = 0; i < key_material.key_material_size; i++) { key_material.writable_data()[i] ^= masking_key.key_material[i]; } auto transit_key_authorizations = AuthorizationSetBuilder() .AesEncryptionKey(256) .Padding(KM_PAD_NONE) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_NONCE, iv) .Authorization(TAG_MIN_MAC_LENGTH, 128) .build(); if (transit_key_authorizations.is_valid() != AuthorizationSet::Error::OK) { return TranslateAuthorizationSetError(transit_key_authorizations.is_valid()); } auto gcm_params = AuthorizationSetBuilder() .Padding(KM_PAD_NONE) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_NONCE, iv) .Authorization(TAG_MAC_LENGTH, 128) .build(); if (gcm_params.is_valid() != AuthorizationSet::Error::OK) { return TranslateAuthorizationSetError(transit_key_authorizations.is_valid()); } auto aes_factory = GetKeyFactory(KM_ALGORITHM_AES); if (!aes_factory) return KM_ERROR_UNKNOWN_ERROR; UniquePtr aes_key; error = aes_factory->LoadKey(std::move(key_material), gcm_params, std::move(transit_key_authorizations), AuthorizationSet(), &aes_key); if (error != KM_ERROR_OK) return error; auto aes_operation_factory = GetOperationFactory(KM_ALGORITHM_AES, KM_PURPOSE_DECRYPT); if (!aes_operation_factory) return KM_ERROR_UNKNOWN_ERROR; OperationPtr aes_operation( aes_operation_factory->CreateOperation(std::move(*aes_key), gcm_params, &error)); if (!aes_operation.get()) return error; error = aes_operation->Begin(gcm_params, &out_params); if (error != KM_ERROR_OK) return error; size_t consumed = 0; Buffer encrypted_key, plaintext; if (!plaintext.Reinitialize(secure_key.key_material_size + tag.data_length)) { return KM_ERROR_MEMORY_ALLOCATION_FAILED; } if (!encrypted_key.Reinitialize(secure_key.key_material_size + tag.data_length)) { return KM_ERROR_MEMORY_ALLOCATION_FAILED; } if (!encrypted_key.write(secure_key.key_material, secure_key.key_material_size)) { return KM_ERROR_UNKNOWN_ERROR; } if (!encrypted_key.write(tag.data, tag.data_length)) { return KM_ERROR_UNKNOWN_ERROR; } AuthorizationSet update_outparams; auto update_params = AuthorizationSetBuilder() .Authorization(TAG_ASSOCIATED_DATA, wrapped_key_description.data, wrapped_key_description.data_length) .build(); if (update_params.is_valid() != AuthorizationSet::Error::OK) { return TranslateAuthorizationSetError(update_params.is_valid()); } error = aes_operation->Update(update_params, encrypted_key, &update_outparams, &plaintext, &consumed); if (error != KM_ERROR_OK) return error; AuthorizationSet finish_params, finish_out_params; Buffer finish_input; error = aes_operation->Finish(finish_params, finish_input, Buffer() /* signature */, &finish_out_params, &plaintext); if (error != KM_ERROR_OK) return error; *wrapped_key_material = {plaintext.peek_read(), plaintext.available_read()}; if (!wrapped_key_material->key_material && plaintext.peek_read()) { return KM_ERROR_MEMORY_ALLOCATION_FAILED; } return error; } const AttestationContext::VerifiedBootParams* PureSoftKeymasterContext::GetVerifiedBootParams(keymaster_error_t* error) const { static VerifiedBootParams params; static std::string fake_vb_key(32, 0); params.verified_boot_key = {reinterpret_cast(fake_vb_key.data()), fake_vb_key.size()}; params.verified_boot_hash = {reinterpret_cast(fake_vb_key.data()), fake_vb_key.size()}; params.verified_boot_state = KM_VERIFIED_BOOT_UNVERIFIED; params.device_locked = false; *error = KM_ERROR_OK; return ¶ms; } } // namespace keymaster