/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "RenderScriptToolkit.h" #include "TaskProcessor.h" #include "Utils.h" namespace android { namespace renderscript { #define LOG_TAG "renderscript.toolkit.Lut3d" /** * Converts a RGBA buffer using a 3D cube. */ class Lut3dTask : public Task { // The input array we're transforming. const uchar4* mIn; // Where we'll store the transformed result. uchar4* mOut; // The size of each of the three cube dimensions. We don't make use of the last value. int4 mCubeDimension; // The translation cube, in row major format. const uchar* mCubeTable; /** * Converts a subset of a line of the 2D buffer. * * @param in The start of the data to transform. * @param out Where to store the result. * @param length The number of 4-byte vectors to transform. */ void kernel(const uchar4* in, uchar4* out, uint32_t length); // Process a 2D tile of the overall work. threadIndex identifies which thread does the work. virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX, size_t endY) override; public: Lut3dTask(const uint8_t* input, uint8_t* output, size_t sizeX, size_t sizeY, const uint8_t* cube, int cubeSizeX, int cubeSizeY, int cubeSizeZ, const Restriction* restriction) : Task{sizeX, sizeY, 4, true, restriction}, mIn{reinterpret_cast(input)}, mOut{reinterpret_cast(output)}, mCubeDimension{cubeSizeX, cubeSizeY, cubeSizeZ, 0}, mCubeTable{cube} {} }; extern "C" void rsdIntrinsic3DLUT_K(void* dst, void const* in, size_t count, void const* lut, int32_t pitchy, int32_t pitchz, int dimx, int dimy, int dimz); void Lut3dTask::kernel(const uchar4* in, uchar4* out, uint32_t length) { uint32_t x1 = 0; uint32_t x2 = length; const uchar* bp = mCubeTable; int4 dims = mCubeDimension - 1; const float4 m = (float4)(1.f / 255.f) * convert(dims); const int4 coordMul = convert(m * (float4)0x8000); const size_t stride_y = mCubeDimension.x * 4; const size_t stride_z = stride_y * mCubeDimension.y; // ALOGE("strides %zu %zu", stride_y, stride_z); #if defined(ARCH_ARM_USE_INTRINSICS) if (mUsesSimd) { int32_t len = x2 - x1; if (len > 0) { rsdIntrinsic3DLUT_K(out, in, len, bp, stride_y, stride_z, dims.x, dims.y, dims.z); x1 += len; out += len; in += len; } } #endif while (x1 < x2) { int4 baseCoord = convert(*in) * coordMul; int4 coord1 = baseCoord >> (int4)15; // int4 coord2 = min(coord1 + 1, gDims - 1); int4 weight2 = baseCoord & 0x7fff; int4 weight1 = (int4)0x8000 - weight2; // ALOGE("coord1 %08x %08x %08x %08x", coord1.x, coord1.y, coord1.z, coord1.w); const uchar* bp2 = bp + (coord1.x * 4) + (coord1.y * stride_y) + (coord1.z * stride_z); const uchar4* pt_00 = (const uchar4*)&bp2[0]; const uchar4* pt_10 = (const uchar4*)&bp2[stride_y]; const uchar4* pt_01 = (const uchar4*)&bp2[stride_z]; const uchar4* pt_11 = (const uchar4*)&bp2[stride_y + stride_z]; uint4 v000 = convert(pt_00[0]); uint4 v100 = convert(pt_00[1]); uint4 v010 = convert(pt_10[0]); uint4 v110 = convert(pt_10[1]); uint4 v001 = convert(pt_01[0]); uint4 v101 = convert(pt_01[1]); uint4 v011 = convert(pt_11[0]); uint4 v111 = convert(pt_11[1]); uint4 yz00 = ((v000 * weight1.x) + (v100 * weight2.x)) >> (int4)7; uint4 yz10 = ((v010 * weight1.x) + (v110 * weight2.x)) >> (int4)7; uint4 yz01 = ((v001 * weight1.x) + (v101 * weight2.x)) >> (int4)7; uint4 yz11 = ((v011 * weight1.x) + (v111 * weight2.x)) >> (int4)7; uint4 z0 = ((yz00 * weight1.y) + (yz10 * weight2.y)) >> (int4)15; uint4 z1 = ((yz01 * weight1.y) + (yz11 * weight2.y)) >> (int4)15; uint4 v = ((z0 * weight1.z) + (z1 * weight2.z)) >> (int4)15; uint4 v2 = (v + 0x7f) >> (int4)8; uchar4 ret = convert(v2); ret.w = in->w; #if 0 if (!x1) { ALOGE("in %08x %08x %08x %08x", in->r, in->g, in->b, in->a); ALOGE("baseCoord %08x %08x %08x %08x", baseCoord.x, baseCoord.y, baseCoord.z, baseCoord.w); ALOGE("coord1 %08x %08x %08x %08x", coord1.x, coord1.y, coord1.z, coord1.w); ALOGE("weight1 %08x %08x %08x %08x", weight1.x, weight1.y, weight1.z, weight1.w); ALOGE("weight2 %08x %08x %08x %08x", weight2.x, weight2.y, weight2.z, weight2.w); ALOGE("v000 %08x %08x %08x %08x", v000.x, v000.y, v000.z, v000.w); ALOGE("v100 %08x %08x %08x %08x", v100.x, v100.y, v100.z, v100.w); ALOGE("yz00 %08x %08x %08x %08x", yz00.x, yz00.y, yz00.z, yz00.w); ALOGE("z0 %08x %08x %08x %08x", z0.x, z0.y, z0.z, z0.w); ALOGE("v %08x %08x %08x %08x", v.x, v.y, v.z, v.w); ALOGE("v2 %08x %08x %08x %08x", v2.x, v2.y, v2.z, v2.w); } #endif *out = ret; in++; out++; x1++; } } void Lut3dTask::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX, size_t endY) { for (size_t y = startY; y < endY; y++) { size_t offset = mSizeX * y + startX; kernel(mIn + offset, mOut + offset, endX - startX); } } void RenderScriptToolkit::lut3d(const uint8_t* input, uint8_t* output, size_t sizeX, size_t sizeY, const uint8_t* cube, size_t cubeSizeX, size_t cubeSizeY, size_t cubeSizeZ, const Restriction* restriction) { #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) { return; } #endif Lut3dTask task(input, output, sizeX, sizeY, cube, cubeSizeX, cubeSizeY, cubeSizeZ, restriction); processor->doTask(&task); } } // namespace renderscript } // namespace android