/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_RESOURCES #include "androidfw/LoadedArsc.h" #include #include #include #include "android-base/logging.h" #include "android-base/stringprintf.h" #include "utils/ByteOrder.h" #include "utils/Trace.h" #ifdef _WIN32 #ifdef ERROR #undef ERROR #endif #endif #include "androidfw/Chunk.h" #include "androidfw/ResourceUtils.h" #include "androidfw/Util.h" using android::base::StringPrintf; namespace android { constexpr const static int kFrameworkPackageId = 0x01; constexpr const static int kAppPackageId = 0x7f; namespace { // Builder that helps accumulate Type structs and then create a single // contiguous block of memory to store both the TypeSpec struct and // the Type structs. struct TypeSpecBuilder { explicit TypeSpecBuilder(incfs::verified_map_ptr header) : header_(header) {} void AddType(incfs::verified_map_ptr type) { TypeSpec::TypeEntry& entry = type_entries.emplace_back(); entry.config.copyFromDtoH(type->config); entry.type = type; } TypeSpec Build() { return {header_, std::move(type_entries)}; } private: DISALLOW_COPY_AND_ASSIGN(TypeSpecBuilder); incfs::verified_map_ptr header_; std::vector type_entries; }; } // namespace // Precondition: The header passed in has already been verified, so reading any fields and trusting // the ResChunk_header is safe. static bool VerifyResTableType(incfs::map_ptr header) { if (header->id == 0) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE has invalid ID 0."; return false; } const size_t entry_count = dtohl(header->entryCount); if (entry_count > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE has too many entries (" << entry_count << ")."; return false; } // Make sure that there is enough room for the entry offsets. const size_t offsets_offset = dtohs(header->header.headerSize); const size_t entries_offset = dtohl(header->entriesStart); const size_t offsets_length = header->flags & ResTable_type::FLAG_OFFSET16 ? sizeof(uint16_t) * entry_count : sizeof(uint32_t) * entry_count; if (offsets_offset > entries_offset || entries_offset - offsets_offset < offsets_length) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets overlap actual entry data."; return false; } if (entries_offset > dtohl(header->header.size)) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entry offsets extend beyond chunk."; return false; } if (entries_offset & 0x03U) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE entries start at unaligned address."; return false; } return true; } static base::expected, NullOrIOError> VerifyResTableEntry(incfs::verified_map_ptr type, uint32_t entry_offset) { // Check that the offset is aligned. if (UNLIKELY(entry_offset & 0x03U)) { LOG(ERROR) << "Entry at offset " << entry_offset << " is not 4-byte aligned."; return base::unexpected(std::nullopt); } // Check that the offset doesn't overflow. if (UNLIKELY(entry_offset > std::numeric_limits::max() - dtohl(type->entriesStart))) { // Overflow in offset. LOG(ERROR) << "Entry at offset " << entry_offset << " is too large."; return base::unexpected(std::nullopt); } const size_t chunk_size = dtohl(type->header.size); entry_offset += dtohl(type->entriesStart); if (UNLIKELY(entry_offset > chunk_size - sizeof(ResTable_entry))) { LOG(ERROR) << "Entry at offset " << entry_offset << " is too large. No room for ResTable_entry."; return base::unexpected(std::nullopt); } auto entry = type.offset(entry_offset).convert(); if (UNLIKELY(!entry)) { return base::unexpected(IOError::PAGES_MISSING); } const size_t entry_size = entry->size(); if (UNLIKELY(entry_size < sizeof(entry.value()))) { LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset << " is too small."; return base::unexpected(std::nullopt); } if (UNLIKELY(entry_size > chunk_size || entry_offset > chunk_size - entry_size)) { LOG(ERROR) << "ResTable_entry size " << entry_size << " at offset " << entry_offset << " is too large."; return base::unexpected(std::nullopt); } // If entry is compact, value is already encoded, and a compact entry // cannot be a map_entry, we are done verifying if (entry->is_compact()) return entry.verified(); if (entry_size < sizeof(ResTable_map_entry)) { // There needs to be room for one Res_value struct. if (UNLIKELY(entry_offset + entry_size > chunk_size - sizeof(Res_value))) { LOG(ERROR) << "No room for Res_value after ResTable_entry at offset " << entry_offset << " for type " << (int)type->id << "."; return base::unexpected(std::nullopt); } auto value = entry.offset(entry_size).convert(); if (UNLIKELY(!value)) { return base::unexpected(IOError::PAGES_MISSING); } const size_t value_size = dtohs(value->size); if (UNLIKELY(value_size < sizeof(Res_value))) { LOG(ERROR) << "Res_value at offset " << entry_offset << " is too small."; return base::unexpected(std::nullopt); } if (UNLIKELY(value_size > chunk_size || entry_offset + entry_size > chunk_size - value_size)) { LOG(ERROR) << "Res_value size " << value_size << " at offset " << entry_offset << " is too large."; return base::unexpected(std::nullopt); } } else { auto map = entry.convert(); if (UNLIKELY(!map)) { return base::unexpected(IOError::PAGES_MISSING); } const size_t map_entry_count = dtohl(map->count); size_t map_entries_start = entry_offset + entry_size; if (UNLIKELY(map_entries_start & 0x03U)) { LOG(ERROR) << "Map entries at offset " << entry_offset << " start at unaligned offset."; return base::unexpected(std::nullopt); } // Each entry is sizeof(ResTable_map) big. if (UNLIKELY(map_entry_count > ((chunk_size - map_entries_start) / sizeof(ResTable_map)))) { LOG(ERROR) << "Too many map entries in ResTable_map_entry at offset " << entry_offset << "."; return base::unexpected(std::nullopt); } } return entry.verified(); } LoadedPackage::iterator::iterator(const LoadedPackage* lp, size_t ti, size_t ei) : loadedPackage_(lp), typeIndex_(ti), entryIndex_(ei), typeIndexEnd_(lp->resource_ids_.size() + 1) { while (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] == 0) { typeIndex_++; } } LoadedPackage::iterator& LoadedPackage::iterator::operator++() { while (typeIndex_ < typeIndexEnd_) { if (entryIndex_ + 1 < loadedPackage_->resource_ids_[typeIndex_]) { entryIndex_++; break; } entryIndex_ = 0; typeIndex_++; if (typeIndex_ < typeIndexEnd_ && loadedPackage_->resource_ids_[typeIndex_] != 0) { break; } } return *this; } uint32_t LoadedPackage::iterator::operator*() const { if (typeIndex_ >= typeIndexEnd_) { return 0; } return make_resid(loadedPackage_->package_id_, typeIndex_ + loadedPackage_->type_id_offset_, entryIndex_); } base::expected, NullOrIOError> LoadedPackage::GetEntry( incfs::verified_map_ptr type_chunk, uint16_t entry_index) { base::expected entry_offset = GetEntryOffset(type_chunk, entry_index); if (UNLIKELY(!entry_offset.has_value())) { return base::unexpected(entry_offset.error()); } return GetEntryFromOffset(type_chunk, entry_offset.value()); } base::expected LoadedPackage::GetEntryOffset( incfs::verified_map_ptr type_chunk, uint16_t entry_index) { // The configuration matches and is better than the previous selection. // Find the entry value if it exists for this configuration. const size_t entry_count = dtohl(type_chunk->entryCount); const auto offsets = type_chunk.offset(dtohs(type_chunk->header.headerSize)); // Check if there is the desired entry in this type. if (type_chunk->flags & ResTable_type::FLAG_SPARSE) { // This is encoded as a sparse map, so perform a binary search. bool error = false; auto sparse_indices = offsets.convert().iterator(); auto sparse_indices_end = sparse_indices + entry_count; auto result = std::lower_bound(sparse_indices, sparse_indices_end, entry_index, [&error](const incfs::map_ptr& entry, uint16_t entry_idx) { if (UNLIKELY(!entry)) { return error = true; } return dtohs(entry->idx) < entry_idx; }); if (result == sparse_indices_end) { // No entry found. return base::unexpected(std::nullopt); } const incfs::verified_map_ptr entry = (*result).verified(); if (dtohs(entry->idx) != entry_index) { if (error) { return base::unexpected(IOError::PAGES_MISSING); } return base::unexpected(std::nullopt); } // Extract the offset from the entry. Each offset must be a multiple of 4 so we store it as // the real offset divided by 4. return uint32_t{dtohs(entry->offset)} * 4u; } // This type is encoded as a dense array. if (entry_index >= entry_count) { // This entry cannot be here. return base::unexpected(std::nullopt); } uint32_t result; if (type_chunk->flags & ResTable_type::FLAG_OFFSET16) { const auto entry_offset_ptr = offsets.convert() + entry_index; if (UNLIKELY(!entry_offset_ptr)) { return base::unexpected(IOError::PAGES_MISSING); } result = offset_from16(entry_offset_ptr.value()); } else { const auto entry_offset_ptr = offsets.convert() + entry_index; if (UNLIKELY(!entry_offset_ptr)) { return base::unexpected(IOError::PAGES_MISSING); } result = dtohl(entry_offset_ptr.value()); } if (result == ResTable_type::NO_ENTRY) { return base::unexpected(std::nullopt); } return result; } base::expected, NullOrIOError> LoadedPackage::GetEntryFromOffset(incfs::verified_map_ptr type_chunk, uint32_t offset) { auto valid = VerifyResTableEntry(type_chunk, offset); if (UNLIKELY(!valid.has_value())) { return base::unexpected(valid.error()); } return valid; } base::expected LoadedPackage::CollectConfigurations( bool exclude_mipmap, std::set* out_configs) const {\ for (const auto& type_spec : type_specs_) { if (exclude_mipmap) { const int type_idx = type_spec.first - 1; const auto type_name16 = type_string_pool_.stringAt(type_idx); if (UNLIKELY(IsIOError(type_name16))) { return base::unexpected(GetIOError(type_name16.error())); } if (type_name16.has_value()) { if (strncmp16(type_name16->data(), u"mipmap", type_name16->size()) == 0) { // This is a mipmap type, skip collection. continue; } } const auto type_name = type_string_pool_.string8At(type_idx); if (UNLIKELY(IsIOError(type_name))) { return base::unexpected(GetIOError(type_name.error())); } if (type_name.has_value()) { if (strncmp(type_name->data(), "mipmap", type_name->size()) == 0) { // This is a mipmap type, skip collection. continue; } } } for (const auto& type_entry : type_spec.second.type_entries) { out_configs->insert(type_entry.config); } } return {}; } void LoadedPackage::CollectLocales(bool canonicalize, std::set* out_locales) const { char temp_locale[RESTABLE_MAX_LOCALE_LEN]; for (const auto& type_spec : type_specs_) { for (const auto& type_entry : type_spec.second.type_entries) { if (type_entry.config.locale != 0) { type_entry.config.getBcp47Locale(temp_locale, canonicalize); std::string locale(temp_locale); out_locales->insert(std::move(locale)); } } } } base::expected LoadedPackage::FindEntryByName( const std::u16string& type_name, const std::u16string& entry_name) const { const base::expected type_idx = type_string_pool_.indexOfString( type_name.data(), type_name.size()); if (!type_idx.has_value()) { return base::unexpected(type_idx.error()); } const base::expected key_idx = key_string_pool_.indexOfString( entry_name.data(), entry_name.size()); if (!key_idx.has_value()) { return base::unexpected(key_idx.error()); } const TypeSpec* type_spec = GetTypeSpecByTypeIndex(*type_idx); if (type_spec == nullptr) { return base::unexpected(std::nullopt); } for (const auto& type_entry : type_spec->type_entries) { const incfs::verified_map_ptr& type = type_entry.type; const size_t entry_count = dtohl(type->entryCount); const auto entry_offsets = type.offset(dtohs(type->header.headerSize)); for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) { uint32_t offset; uint16_t res_idx; if (type->flags & ResTable_type::FLAG_SPARSE) { auto sparse_entry = entry_offsets.convert() + entry_idx; if (!sparse_entry) { return base::unexpected(IOError::PAGES_MISSING); } offset = dtohs(sparse_entry->offset) * 4u; res_idx = dtohs(sparse_entry->idx); } else if (type->flags & ResTable_type::FLAG_OFFSET16) { auto entry = entry_offsets.convert() + entry_idx; if (!entry) { return base::unexpected(IOError::PAGES_MISSING); } offset = offset_from16(entry.value()); res_idx = entry_idx; } else { auto entry = entry_offsets.convert() + entry_idx; if (!entry) { return base::unexpected(IOError::PAGES_MISSING); } offset = dtohl(entry.value()); res_idx = entry_idx; } if (offset != ResTable_type::NO_ENTRY) { auto entry = type.offset(dtohl(type->entriesStart) + offset).convert(); if (!entry) { return base::unexpected(IOError::PAGES_MISSING); } if (entry->key() == static_cast(*key_idx)) { // The package ID will be overridden by the caller (due to runtime assignment of package // IDs for shared libraries). return make_resid(0x00, *type_idx + type_id_offset_ + 1, res_idx); } } } } return base::unexpected(std::nullopt); } const LoadedPackage* LoadedArsc::GetPackageById(uint8_t package_id) const { for (const auto& loaded_package : packages_) { if (loaded_package->GetPackageId() == package_id) { return loaded_package.get(); } } return nullptr; } std::unique_ptr LoadedPackage::Load(const Chunk& chunk, package_property_t property_flags) { ATRACE_NAME("LoadedPackage::Load"); std::unique_ptr loaded_package(new LoadedPackage()); // typeIdOffset was added at some point, but we still must recognize apps built before this // was added. constexpr size_t kMinPackageSize = sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset); const incfs::map_ptr header = chunk.header(); if (!header) { LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE too small."; return {}; } if ((property_flags & PROPERTY_SYSTEM) != 0) { loaded_package->property_flags_ |= PROPERTY_SYSTEM; } if ((property_flags & PROPERTY_LOADER) != 0) { loaded_package->property_flags_ |= PROPERTY_LOADER; } if ((property_flags & PROPERTY_OVERLAY) != 0) { // Overlay resources must have an exclusive resource id space for referencing internal // resources. loaded_package->property_flags_ |= PROPERTY_OVERLAY | PROPERTY_DYNAMIC; } loaded_package->package_id_ = dtohl(header->id); if (loaded_package->package_id_ == 0 || (loaded_package->package_id_ == kAppPackageId && (property_flags & PROPERTY_DYNAMIC) != 0)) { loaded_package->property_flags_ |= PROPERTY_DYNAMIC; } if (header->header.headerSize >= sizeof(ResTable_package)) { uint32_t type_id_offset = dtohl(header->typeIdOffset); if (type_id_offset > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_PACKAGE_TYPE type ID offset too large."; return {}; } loaded_package->type_id_offset_ = static_cast(type_id_offset); } util::ReadUtf16StringFromDevice(header->name, arraysize(header->name), &loaded_package->package_name_); // A map of TypeSpec builders, each associated with an type index. // We use these to accumulate the set of Types available for a TypeSpec, and later build a single, // contiguous block of memory that holds all the Types together with the TypeSpec. std::unordered_map> type_builder_map; ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: { const auto pool_address = child_chunk.header(); if (!pool_address) { LOG(ERROR) << "RES_STRING_POOL_TYPE is incomplete due to incremental installation."; return {}; } if (pool_address == header.offset(dtohl(header->typeStrings)).convert()) { // This string pool is the type string pool. status_t err = loaded_package->type_string_pool_.setTo( child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE for types corrupt."; return {}; } } else if (pool_address == header.offset(dtohl(header->keyStrings)) .convert()) { // This string pool is the key string pool. status_t err = loaded_package->key_string_pool_.setTo( child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE for keys corrupt."; return {}; } } else { LOG(WARNING) << "Too many RES_STRING_POOL_TYPEs found in RES_TABLE_PACKAGE_TYPE."; } } break; case RES_TABLE_TYPE_SPEC_TYPE: { const auto type_spec = child_chunk.header(); if (!type_spec) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small."; return {}; } if (type_spec->id == 0) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0."; return {}; } if (loaded_package->type_id_offset_ + static_cast(type_spec->id) > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has out of range ID."; return {}; } // The data portion of this chunk contains entry_count 32bit entries, // each one representing a set of flags. // Here we only validate that the chunk is well formed. const size_t entry_count = dtohl(type_spec->entryCount); // There can only be 2^16 entries in a type, because that is the ID // space for entries (EEEE) in the resource ID 0xPPTTEEEE. if (entry_count > std::numeric_limits::max()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE has too many entries (" << entry_count << ")."; return {}; } if (entry_count * sizeof(uint32_t) > chunk.data_size()) { LOG(ERROR) << "RES_TABLE_TYPE_SPEC_TYPE too small to hold entries."; return {}; } std::unique_ptr& builder_ptr = type_builder_map[type_spec->id]; if (builder_ptr == nullptr) { builder_ptr = util::make_unique(type_spec.verified()); loaded_package->resource_ids_.set(type_spec->id, entry_count); } else { LOG(WARNING) << StringPrintf("RES_TABLE_TYPE_SPEC_TYPE already defined for ID %02x", type_spec->id); } } break; case RES_TABLE_TYPE_TYPE: { const auto type = child_chunk.header(); if (!type) { LOG(ERROR) << "RES_TABLE_TYPE_TYPE too small."; return {}; } if (!VerifyResTableType(type)) { return {}; } // Type chunks must be preceded by their TypeSpec chunks. std::unique_ptr& builder_ptr = type_builder_map[type->id]; if (builder_ptr != nullptr) { builder_ptr->AddType(type.verified()); } else { LOG(ERROR) << StringPrintf( "RES_TABLE_TYPE_TYPE with ID %02x found without preceding RES_TABLE_TYPE_SPEC_TYPE.", type->id); return {}; } } break; case RES_TABLE_LIBRARY_TYPE: { const auto lib = child_chunk.header(); if (!lib) { LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small."; return {}; } if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) { LOG(ERROR) << "RES_TABLE_LIBRARY_TYPE too small to hold entries."; return {}; } loaded_package->dynamic_package_map_.reserve(dtohl(lib->count)); const auto entry_begin = child_chunk.data_ptr().convert(); const auto entry_end = entry_begin + dtohl(lib->count); for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) { if (!entry_iter) { return {}; } std::string package_name; util::ReadUtf16StringFromDevice(entry_iter->packageName, arraysize(entry_iter->packageName), &package_name); if (dtohl(entry_iter->packageId) >= std::numeric_limits::max()) { LOG(ERROR) << StringPrintf( "Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.", dtohl(entry_iter->packageId), package_name.c_str()); return {}; } loaded_package->dynamic_package_map_.emplace_back(std::move(package_name), dtohl(entry_iter->packageId)); } } break; case RES_TABLE_OVERLAYABLE_TYPE: { const auto overlayable = child_chunk.header(); if (!overlayable) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_TYPE too small."; return {}; } std::string name; util::ReadUtf16StringFromDevice(overlayable->name, std::size(overlayable->name), &name); std::string actor; util::ReadUtf16StringFromDevice(overlayable->actor, std::size(overlayable->actor), &actor); auto [name_to_actor_it, inserted] = loaded_package->overlayable_map_.emplace(std::move(name), std::move(actor)); if (!inserted) { LOG(ERROR) << "Multiple blocks with the same name '" << name_to_actor_it->first << "'."; return {}; } // Iterate over the overlayable policy chunks contained within the overlayable chunk data ChunkIterator overlayable_iter(child_chunk.data_ptr(), child_chunk.data_size()); while (overlayable_iter.HasNext()) { const Chunk overlayable_child_chunk = overlayable_iter.Next(); switch (overlayable_child_chunk.type()) { case RES_TABLE_OVERLAYABLE_POLICY_TYPE: { const auto policy_header = overlayable_child_chunk.header(); if (!policy_header) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small."; return {}; } if ((overlayable_child_chunk.data_size() / sizeof(ResTable_ref)) < dtohl(policy_header->entry_count)) { LOG(ERROR) << "RES_TABLE_OVERLAYABLE_POLICY_TYPE too small to hold entries."; return {}; } // Retrieve all the resource ids belonging to this policy chunk const auto ids_begin = overlayable_child_chunk.data_ptr().convert(); const auto ids_end = ids_begin + dtohl(policy_header->entry_count); std::unordered_set ids; ids.reserve(ids_end - ids_begin); for (auto id_iter = ids_begin; id_iter != ids_end; ++id_iter) { if (!id_iter) { LOG(ERROR) << "NULL ResTable_ref record??"; return {}; } ids.insert(dtohl(id_iter->ident)); } // Add the pairing of overlayable properties and resource ids to the package OverlayableInfo overlayable_info { .name = name_to_actor_it->first, .actor = name_to_actor_it->second, .policy_flags = policy_header->policy_flags }; loaded_package->overlayable_infos_.emplace_back(std::move(overlayable_info), std::move(ids)); loaded_package->defines_overlayable_ = true; break; } default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (overlayable_iter.HadError()) { LOG(ERROR) << StringPrintf("Error parsing RES_TABLE_OVERLAYABLE_TYPE: %s", overlayable_iter.GetLastError().c_str()); if (overlayable_iter.HadFatalError()) { return {}; } } } break; case RES_TABLE_STAGED_ALIAS_TYPE: { if (loaded_package->package_id_ != kFrameworkPackageId) { LOG(WARNING) << "Alias chunk ignored for non-framework package '" << loaded_package->package_name_ << "'"; break; } const auto lib_alias = child_chunk.header(); if (!lib_alias) { LOG(ERROR) << "RES_TABLE_STAGED_ALIAS_TYPE is too small."; return {}; } if ((child_chunk.data_size() / sizeof(ResTable_staged_alias_entry)) < dtohl(lib_alias->count)) { LOG(ERROR) << "RES_TABLE_STAGED_ALIAS_TYPE is too small to hold entries."; return {}; } const auto entry_begin = child_chunk.data_ptr().convert(); const auto entry_end = entry_begin + dtohl(lib_alias->count); std::unordered_set finalized_ids; finalized_ids.reserve(entry_end - entry_begin); loaded_package->alias_id_map_.reserve(entry_end - entry_begin); for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) { if (!entry_iter) { LOG(ERROR) << "NULL ResTable_staged_alias_entry record??"; return {}; } auto finalized_id = dtohl(entry_iter->finalizedResId); if (!finalized_ids.insert(finalized_id).second) { LOG(ERROR) << StringPrintf("Repeated finalized resource id '%08x' in staged aliases.", finalized_id); return {}; } auto staged_id = dtohl(entry_iter->stagedResId); loaded_package->alias_id_map_.emplace_back(staged_id, finalized_id); } std::sort(loaded_package->alias_id_map_.begin(), loaded_package->alias_id_map_.end(), [](auto&& l, auto&& r) { return l.first < r.first; }); const auto duplicate_it = std::adjacent_find(loaded_package->alias_id_map_.begin(), loaded_package->alias_id_map_.end(), [](auto&& l, auto&& r) { return l.first == r.first; }); if (duplicate_it != loaded_package->alias_id_map_.end()) { LOG(ERROR) << StringPrintf("Repeated staged resource id '%08x' in staged aliases.", duplicate_it->first); return {}; } } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return {}; } } // Flatten and construct the TypeSpecs. for (auto& entry : type_builder_map) { TypeSpec type_spec = entry.second->Build(); uint8_t type_id = static_cast(entry.first); loaded_package->type_specs_[type_id] = std::move(type_spec); } return std::move(loaded_package); } bool LoadedArsc::LoadTable(const Chunk& chunk, const LoadedIdmap* loaded_idmap, package_property_t property_flags) { incfs::map_ptr header = chunk.header(); if (!header) { LOG(ERROR) << "RES_TABLE_TYPE too small."; return false; } if (loaded_idmap != nullptr) { global_string_pool_ = util::make_unique(loaded_idmap); } const size_t package_count = dtohl(header->packageCount); size_t packages_seen = 0; packages_.reserve(package_count); ChunkIterator iter(chunk.data_ptr(), chunk.data_size()); while (iter.HasNext()) { const Chunk child_chunk = iter.Next(); switch (child_chunk.type()) { case RES_STRING_POOL_TYPE: // Only use the first string pool. Ignore others. if (global_string_pool_->getError() == NO_INIT) { status_t err = global_string_pool_->setTo(child_chunk.header(), child_chunk.size()); if (err != NO_ERROR) { LOG(ERROR) << "RES_STRING_POOL_TYPE corrupt."; return false; } } else { LOG(WARNING) << "Multiple RES_STRING_POOL_TYPEs found in RES_TABLE_TYPE."; } break; case RES_TABLE_PACKAGE_TYPE: { if (packages_seen + 1 > package_count) { LOG(ERROR) << "More package chunks were found than the " << package_count << " declared in the header."; return false; } packages_seen++; std::unique_ptr loaded_package = LoadedPackage::Load(child_chunk, property_flags); if (!loaded_package) { return false; } packages_.push_back(std::move(loaded_package)); } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return false; } } return true; } bool LoadedArsc::LoadStringPool(const LoadedIdmap* loaded_idmap) { if (loaded_idmap != nullptr) { global_string_pool_ = util::make_unique(loaded_idmap); } return true; } std::unique_ptr LoadedArsc::Load(incfs::map_ptr data, const size_t length, const LoadedIdmap* loaded_idmap, const package_property_t property_flags) { ATRACE_NAME("LoadedArsc::Load"); // Not using make_unique because the constructor is private. std::unique_ptr loaded_arsc(new LoadedArsc()); ChunkIterator iter(data, length); while (iter.HasNext()) { const Chunk chunk = iter.Next(); switch (chunk.type()) { case RES_TABLE_TYPE: if (!loaded_arsc->LoadTable(chunk, loaded_idmap, property_flags)) { return {}; } break; default: LOG(WARNING) << StringPrintf("Unknown chunk type '%02x'.", chunk.type()); break; } } if (iter.HadError()) { LOG(ERROR) << iter.GetLastError(); if (iter.HadFatalError()) { return {}; } } return loaded_arsc; } std::unique_ptr LoadedArsc::Load(const LoadedIdmap* loaded_idmap) { ATRACE_NAME("LoadedArsc::Load"); // Not using make_unique because the constructor is private. std::unique_ptr loaded_arsc(new LoadedArsc()); loaded_arsc->LoadStringPool(loaded_idmap); return loaded_arsc; } std::unique_ptr LoadedArsc::CreateEmpty() { return std::unique_ptr(new LoadedArsc()); } } // namespace android