// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include class AveragePoolingOperatorTester { public: inline AveragePoolingOperatorTester& padding_tf_same(bool padding_same) { if (padding_same) { assert(padding_top() == 0); assert(padding_left() == 0); assert(padding_bottom() == 0); assert(padding_right() == 0); } this->padding_tf_same_ = padding_same; return *this; } inline bool padding_tf_same() const { return this->padding_tf_same_; } inline AveragePoolingOperatorTester& padding(uint32_t padding) { assert(!padding_tf_same()); this->padding_top_ = padding; this->padding_right_ = padding; this->padding_bottom_ = padding; this->padding_left_ = padding; return *this; } inline AveragePoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_right_ = padding_width; this->padding_bottom_ = padding_height; this->padding_left_ = padding_width; return *this; } inline AveragePoolingOperatorTester& padding_height(uint32_t padding_height) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_bottom_ = padding_height; return *this; } inline AveragePoolingOperatorTester& padding_width(uint32_t padding_width) { assert(!padding_tf_same()); this->padding_right_ = padding_width; this->padding_left_ = padding_width; return *this; } inline AveragePoolingOperatorTester& padding_top(uint32_t padding_top) { assert(!padding_tf_same()); this->padding_top_ = padding_top; return *this; } inline uint32_t padding_top() const { if (padding_tf_same()) { const uint32_t total_padding_height = (output_height() - 1) * stride_height() + pooling_height() - input_height(); return total_padding_height / 2; } else { return this->padding_top_; } } inline AveragePoolingOperatorTester& padding_left(uint32_t padding_left) { assert(!padding_tf_same()); this->padding_left_ = padding_left; return *this; } inline uint32_t padding_left() const { if (padding_tf_same()) { const uint32_t total_padding_width = (output_width() - 1) * stride_width() + pooling_width() - input_width(); return total_padding_width / 2; } else { return this->padding_left_; } } inline AveragePoolingOperatorTester& padding_bottom(uint32_t padding_bottom) { assert(!padding_tf_same()); this->padding_bottom_ = padding_bottom; return *this; } inline uint32_t padding_bottom() const { if (padding_tf_same()) { const uint32_t total_padding_height = (output_height() - 1) * stride_height() + pooling_height() - input_height(); return total_padding_height - total_padding_height / 2; } else { return this->padding_bottom_; } } inline AveragePoolingOperatorTester& padding_right(uint32_t padding_right) { assert(!padding_tf_same()); this->padding_right_ = padding_right; return *this; } inline uint32_t padding_right() const { if (padding_tf_same()) { const uint32_t total_padding_width = (output_width() - 1) * stride_width() + pooling_width() - input_width(); return total_padding_width - total_padding_width / 2; } else { return this->padding_right_; } } inline AveragePoolingOperatorTester& input_size(size_t input_height, size_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline AveragePoolingOperatorTester& input_height(size_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline size_t input_height() const { return this->input_height_; } inline AveragePoolingOperatorTester& input_width(size_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline size_t input_width() const { return this->input_width_; } inline AveragePoolingOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline AveragePoolingOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline AveragePoolingOperatorTester& pooling_size(uint32_t pooling_size) { assert(pooling_size >= 1); this->pooling_height_ = pooling_size; this->pooling_width_ = pooling_size; return *this; } inline AveragePoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) { assert(pooling_height >= 1); assert(pooling_width >= 1); this->pooling_height_ = pooling_height; this->pooling_width_ = pooling_width; return *this; } inline AveragePoolingOperatorTester& pooling_height(uint32_t pooling_height) { assert(pooling_height >= 1); this->pooling_height_ = pooling_height; return *this; } inline uint32_t pooling_height() const { return this->pooling_height_; } inline AveragePoolingOperatorTester& pooling_width(uint32_t pooling_width) { assert(pooling_width >= 1); this->pooling_width_ = pooling_width; return *this; } inline uint32_t pooling_width() const { return this->pooling_width_; } inline AveragePoolingOperatorTester& stride(uint32_t stride) { assert(stride >= 1); this->stride_height_ = stride; this->stride_width_ = stride; return *this; } inline AveragePoolingOperatorTester& stride(uint32_t stride_height, uint32_t stride_width) { assert(stride_height >= 1); assert(stride_width >= 1); this->stride_height_ = stride_height; this->stride_width_ = stride_width; return *this; } inline AveragePoolingOperatorTester& stride_height(uint32_t stride_height) { assert(stride_height >= 1); this->stride_height_ = stride_height; return *this; } inline uint32_t stride_height() const { return this->stride_height_; } inline AveragePoolingOperatorTester& stride_width(uint32_t stride_width) { assert(stride_width >= 1); this->stride_width_ = stride_width; return *this; } inline uint32_t stride_width() const { return this->stride_width_; } inline size_t output_height() const { if (padding_tf_same()) { return (input_height() + stride_height() - 1) / stride_height(); } else { const size_t padded_input_height = padding_top() + input_height() + padding_bottom(); if (padded_input_height <= pooling_height()) { return 1; } else { return (padded_input_height - pooling_height()) / stride_height() + 1; } } } inline size_t output_width() const { if (padding_tf_same()) { return (input_width() + stride_width() - 1) / stride_width(); } else { const size_t padded_input_width = padding_left() + input_width() + padding_right(); if (padded_input_width <= pooling_width()) { return 1; } else { return (padded_input_width - pooling_width()) / stride_width() + 1; } } } inline AveragePoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) { assert(input_pixel_stride != 0); this->input_pixel_stride_ = input_pixel_stride; return *this; } inline size_t input_pixel_stride() const { if (this->input_pixel_stride_ == 0) { return channels(); } else { assert(this->input_pixel_stride_ >= channels()); return this->input_pixel_stride_; } } inline AveragePoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) { assert(output_pixel_stride != 0); this->output_pixel_stride_ = output_pixel_stride; return *this; } inline size_t output_pixel_stride() const { if (this->output_pixel_stride_ == 0) { return channels(); } else { assert(this->output_pixel_stride_ >= channels()); return this->output_pixel_stride_; } } inline AveragePoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) { assert(next_input_height >= 1); assert(next_input_width >= 1); this->next_input_height_ = next_input_height; this->next_input_width_ = next_input_width; return *this; } inline AveragePoolingOperatorTester& next_input_height(uint32_t next_input_height) { assert(next_input_height >= 1); this->next_input_height_ = next_input_height; return *this; } inline uint32_t next_input_height() const { if (this->next_input_height_ == 0) { return input_height(); } else { return this->next_input_height_; } } inline AveragePoolingOperatorTester& next_input_width(uint32_t next_input_width) { assert(next_input_width >= 1); this->next_input_width_ = next_input_width; return *this; } inline uint32_t next_input_width() const { if (this->next_input_width_ == 0) { return input_width(); } else { return this->next_input_width_; } } inline size_t next_output_height() const { const size_t padded_next_input_height = padding_top() + next_input_height() + padding_bottom(); if (padded_next_input_height <= pooling_height()) { return 1; } else { return (padded_next_input_height - pooling_height()) / stride_height() + 1; } } inline size_t next_output_width() const { const size_t padded_next_input_width = padding_left() + next_input_width() + padding_right(); if (padded_next_input_width <= pooling_width()) { return 1; } else { return (padded_next_input_width - pooling_width()) / stride_width() + 1; } } inline AveragePoolingOperatorTester& next_batch_size(size_t next_batch_size) { assert(next_batch_size >= 1); this->next_batch_size_ = next_batch_size; return *this; } inline size_t next_batch_size() const { if (this->next_batch_size_ == 0) { return batch_size(); } else { return this->next_batch_size_; } } inline AveragePoolingOperatorTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline AveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline AveragePoolingOperatorTester& output_scale(float output_scale) { assert(output_scale > 0.0f); assert(std::isnormal(output_scale)); this->output_scale_ = output_scale; return *this; } inline float output_scale() const { return this->output_scale_; } inline AveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline uint8_t output_zero_point() const { return this->output_zero_point_; } inline AveragePoolingOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline AveragePoolingOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline AveragePoolingOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestF16() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; int32_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]); n += 1; } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = acc / float(n); } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)); output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max)); if (accumulated_range == 0.0f) { output_min = -std::numeric_limits::infinity(); output_max = +std::numeric_limits::infinity(); } if (qmin() == std::numeric_limits::min()) { output_min = -std::numeric_limits::infinity(); } if (qmax() == std::numeric_limits::max()) { output_max = +std::numeric_limits::infinity(); } // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; const xnn_status status = xnn_create_average_pooling2d_nhwc_f16( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), output_min, output_max, 0, &average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, average_pooling_op); // Smart pointer to automatically delete average_pooling_op. std::unique_ptr auto_average_pooling_op(average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f16( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_max); ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_min); ASSERT_NEAR( fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], std::max(1.0e-3f, std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-2f)) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; int32_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]; n += 1; } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = acc / float(n); } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_range == 0.0f ? -std::numeric_limits::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = accumulated_range == 0.0f ? +std::numeric_limits::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_average_pooling2d_nhwc_f32( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), output_min, output_max, 0, &average_pooling_op)); ASSERT_NE(nullptr, average_pooling_op); // Smart pointer to automatically delete average_pooling_op. std::unique_ptr auto_average_pooling_op(average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f32( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max); ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min); ASSERT_NEAR(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-6f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(output.begin(), output.end(), UINT8_C(0xA5)); // Compute reference results. const double scale = double(input_scale()) / (double(output_scale()) * double(pooling_height() * pooling_width())); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { double acc = 0.0f; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += double(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]) - int32_t(input_zero_point())); } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = float(acc * scale + double(output_zero_point())); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = std::min(output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c], float(qmax())); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = std::max(output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c], float(qmin())); } } } } // Create, setup, run, and destroy Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_average_pooling2d_nhwc_qu8( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), input_zero_point(), input_scale(), output_zero_point(), output_scale(), qmin(), qmax(), 0, &average_pooling_op)); ASSERT_NE(nullptr, average_pooling_op); // Smart pointer to automatically delete average_pooling_op. std::unique_ptr auto_average_pooling_op(average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_qu8( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax())); ASSERT_GE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin())); ASSERT_NEAR(float(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])), output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], 0.80f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestSetupF16() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input(XNN_EXTRA_BYTES / sizeof(uint16_t) + std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels())); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels())); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; size_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]); n += 1; } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = acc / float(n); } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; float output_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); float output_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_min)); output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(output_max)); if (accumulated_range == 0.0f) { output_min = -std::numeric_limits::infinity(); output_max = +std::numeric_limits::infinity(); } if (qmin() == std::numeric_limits::min()) { output_min = -std::numeric_limits::infinity(); } if (qmax() == std::numeric_limits::max()) { output_max = +std::numeric_limits::infinity(); } // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, and run Average Pooling operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; const xnn_status status = xnn_create_average_pooling2d_nhwc_f16( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), output_min, output_max, 0, &average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, average_pooling_op); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f16( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_max); ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_min); ASSERT_NEAR( fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], std::max(1.0e-3f, std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-2f)) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results for the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; int32_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < next_input_width() && iy < next_input_height()) { acc += fp16_ieee_to_fp32_value(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]); n += 1; } } } next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = std::max(std::min(acc / float(n), output_max), output_min); } } } } // Setup and run Average Pooling operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f16( average_pooling_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_delete_operator(average_pooling_op)); average_pooling_op = nullptr; // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), output_max); ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), output_min); ASSERT_NEAR( fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c], std::max(1.0e-3f, std::abs(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c]) * 1.0e-2f)) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestSetupF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input(XNN_EXTRA_BYTES / sizeof(float) + std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels())); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels())); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; size_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]; n += 1; } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = acc / float(n); } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_range == 0.0f ? -std::numeric_limits::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = accumulated_range == 0.0f ? +std::numeric_limits::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, and run Average Pooling operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_average_pooling2d_nhwc_f32( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), output_min, output_max, 0, &average_pooling_op)); ASSERT_NE(nullptr, average_pooling_op); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f32( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max); ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min); ASSERT_NEAR(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-6f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results for the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { float acc = 0.0f; int32_t n = 0; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < next_input_width() && iy < next_input_height()) { acc += input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]; n += 1; } } } next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = std::max(std::min(acc / float(n), output_max), output_min); } } } } // Setup and run Average Pooling operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f32( average_pooling_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_delete_operator(average_pooling_op)); average_pooling_op = nullptr; // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_max); ASSERT_GE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_min); ASSERT_NEAR(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c], std::abs(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c]) * 1.0e-6f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestSetupQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels())); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels())); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(output.begin(), output.end(), INT8_C(0xA5)); // Compute reference results. const double scale = double(input_scale()) / (double(output_scale()) * double(pooling_height() * pooling_width())); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { double acc = 0.0f; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < input_width() && iy < input_height()) { acc += double(int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]) - int32_t(input_zero_point())); } } } output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = float(acc * scale + double(output_zero_point())); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = std::min(output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c], float(qmax())); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = std::max(output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c], float(qmin())); } } } } // Create, setup, and run Average Pooling operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t average_pooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_average_pooling2d_nhwc_qu8( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), stride_height(), stride_width(), channels(), input_pixel_stride(), output_pixel_stride(), input_zero_point(), input_scale(), output_zero_point(), output_scale(), qmin(), qmax(), 0, &average_pooling_op)); ASSERT_NE(nullptr, average_pooling_op); ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_qu8( average_pooling_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax())); ASSERT_GE(uint32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin())); ASSERT_NEAR(float(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c])), output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], 0.80f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(output.begin(), output.end(), UINT8_C(0xA5)); // Compute reference results for the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t c = 0; c < channels(); c++) { double acc = 0.0f; for (size_t py = 0; py < pooling_height(); py++) { const size_t iy = oy * stride_height() + py - padding_top(); for (size_t px = 0; px < pooling_width(); px++) { const size_t ix = ox * stride_width() + px - padding_left(); if (ix < next_input_width() && iy < next_input_height()) { acc += double(int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]) - int32_t(input_zero_point())); } } } next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = float(acc * scale + double(output_zero_point())); next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = std::min(next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c], float(qmax())); next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = std::max(next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c], float(qmin())); } } } } // Setup and run Average Pooling operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_qu8( average_pooling_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(average_pooling_op, nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_delete_operator(average_pooling_op)); average_pooling_op = nullptr; // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), uint32_t(qmax())); ASSERT_GE(uint32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]), uint32_t(qmin())); ASSERT_NEAR(float(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c])), next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c], 0.80f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } private: uint32_t padding_top_{0}; uint32_t padding_right_{0}; uint32_t padding_bottom_{0}; uint32_t padding_left_{0}; bool padding_tf_same_{false}; size_t input_height_{1}; size_t input_width_{1}; size_t channels_{1}; size_t batch_size_{1}; size_t input_pixel_stride_{0}; size_t output_pixel_stride_{0}; uint32_t pooling_height_{1}; uint32_t pooling_width_{1}; uint32_t stride_height_{1}; uint32_t stride_width_{1}; size_t next_input_height_{0}; size_t next_input_width_{0}; size_t next_batch_size_{0}; float input_scale_{1.0f}; float output_scale_{1.0f}; uint8_t input_zero_point_{121}; uint8_t output_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{1}; };