/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "utils/GraphUtils.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/graph/Logger.h" #include "arm_compute/runtime/SubTensor.h" #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #include "utils/ImageLoader.h" #pragma GCC diagnostic pop #include "utils/Utils.h" #include #include #include using namespace arm_compute::graph_utils; namespace { std::pair compute_permutation_parameters(const arm_compute::TensorShape &shape, arm_compute::DataLayout data_layout) { // Set permutation parameters if needed arm_compute::TensorShape permuted_shape = shape; arm_compute::PermutationVector perm; // Permute only if num_dimensions greater than 2 if(shape.num_dimensions() > 2) { perm = (data_layout == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U); arm_compute::PermutationVector perm_shape = (data_layout == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U); arm_compute::permute(permuted_shape, perm_shape); } return std::make_pair(permuted_shape, perm); } } // namespace TFPreproccessor::TFPreproccessor(float min_range, float max_range) : _min_range(min_range), _max_range(max_range) { } void TFPreproccessor::preprocess(ITensor &tensor) { if(tensor.info()->data_type() == DataType::F32) { preprocess_typed(tensor); } else if(tensor.info()->data_type() == DataType::F16) { preprocess_typed(tensor); } else { ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } template void TFPreproccessor::preprocess_typed(ITensor &tensor) { Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); const float range = _max_range - _min_range; execute_window_loop(window, [&](const Coordinates & id) { const T value = *reinterpret_cast(tensor.ptr_to_element(id)); float res = value / 255.f; // Normalize to [0, 1] res = res * range + _min_range; // Map to [min_range, max_range] *reinterpret_cast(tensor.ptr_to_element(id)) = res; }); } CaffePreproccessor::CaffePreproccessor(std::array mean, bool bgr, float scale) : _mean(mean), _bgr(bgr), _scale(scale) { if(_bgr) { std::swap(_mean[0], _mean[2]); } } void CaffePreproccessor::preprocess(ITensor &tensor) { if(tensor.info()->data_type() == DataType::F32) { preprocess_typed(tensor); } else if(tensor.info()->data_type() == DataType::F16) { preprocess_typed(tensor); } else { ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } } template void CaffePreproccessor::preprocess_typed(ITensor &tensor) { Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); const int channel_idx = get_data_layout_dimension_index(tensor.info()->data_layout(), DataLayoutDimension::CHANNEL); execute_window_loop(window, [&](const Coordinates & id) { const T value = *reinterpret_cast(tensor.ptr_to_element(id)) - T(_mean[id[channel_idx]]); *reinterpret_cast(tensor.ptr_to_element(id)) = value * T(_scale); }); } PPMWriter::PPMWriter(std::string name, unsigned int maximum) : _name(std::move(name)), _iterator(0), _maximum(maximum) { } bool PPMWriter::access_tensor(ITensor &tensor) { std::stringstream ss; ss << _name << _iterator << ".ppm"; arm_compute::utils::save_to_ppm(tensor, ss.str()); _iterator++; if(_maximum == 0) { return true; } return _iterator < _maximum; } DummyAccessor::DummyAccessor(unsigned int maximum) : _iterator(0), _maximum(maximum) { } bool DummyAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_UNUSED(tensor); bool ret = _maximum == 0 || _iterator < _maximum; if(_iterator == _maximum) { _iterator = 0; } else { _iterator++; } return ret; } NumPyAccessor::NumPyAccessor(std::string npy_path, TensorShape shape, DataType data_type, DataLayout data_layout, std::ostream &output_stream) : _npy_tensor(), _filename(std::move(npy_path)), _output_stream(output_stream) { NumPyBinLoader loader(_filename, data_layout); TensorInfo info(shape, 1, data_type); info.set_data_layout(data_layout); _npy_tensor.allocator()->init(info); _npy_tensor.allocator()->allocate(); loader.access_tensor(_npy_tensor); } template void NumPyAccessor::access_numpy_tensor(ITensor &tensor, T tolerance) { const int num_elements = tensor.info()->tensor_shape().total_size(); int num_mismatches = utils::compare_tensor(tensor, _npy_tensor, tolerance); float percentage_mismatches = static_cast(num_mismatches) / num_elements; _output_stream << "Results: " << 100.f - (percentage_mismatches * 100) << " % matches with the provided output[" << _filename << "]." << std::endl; _output_stream << " " << num_elements - num_mismatches << " out of " << num_elements << " matches with the provided output[" << _filename << "]." << std::endl << std::endl; } bool NumPyAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8); ARM_COMPUTE_ERROR_ON(_npy_tensor.info()->dimension(0) != tensor.info()->dimension(0)); switch(tensor.info()->data_type()) { case DataType::QASYMM8: access_numpy_tensor(tensor, 0); break; case DataType::F32: access_numpy_tensor(tensor, 0.0001f); break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return false; } #ifdef ARM_COMPUTE_ASSERTS_ENABLED PrintAccessor::PrintAccessor(std::ostream &output_stream, IOFormatInfo io_fmt) : _output_stream(output_stream), _io_fmt(io_fmt) { } bool PrintAccessor::access_tensor(ITensor &tensor) { tensor.print(_output_stream, _io_fmt); return false; } #endif /* ARM_COMPUTE_ASSERTS_ENABLED */ SaveNumPyAccessor::SaveNumPyAccessor(std::string npy_name, const bool is_fortran) : _npy_name(std::move(npy_name)), _is_fortran(is_fortran) { } bool SaveNumPyAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32); utils::save_to_npy(tensor, _npy_name, _is_fortran); return false; } ImageAccessor::ImageAccessor(std::string filename, bool bgr, std::unique_ptr preprocessor) : _already_loaded(false), _filename(std::move(filename)), _bgr(bgr), _preprocessor(std::move(preprocessor)) { } bool ImageAccessor::access_tensor(ITensor &tensor) { if(!_already_loaded) { auto image_loader = utils::ImageLoaderFactory::create(_filename); ARM_COMPUTE_EXIT_ON_MSG(image_loader == nullptr, "Unsupported image type"); // Open image file image_loader->open(_filename); // Get permutated shape and permutation parameters TensorShape permuted_shape = tensor.info()->tensor_shape(); arm_compute::PermutationVector perm; if(tensor.info()->data_layout() != DataLayout::NCHW) { std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout()); } ARM_COMPUTE_EXIT_ON_MSG_VAR(image_loader->width() != permuted_shape.x() || image_loader->height() != permuted_shape.y(), "Failed to load image file: dimensions [%d,%d] not correct, expected [%zu ,%zu ].", image_loader->width(), image_loader->height(), permuted_shape.x(), permuted_shape.y()); // Fill the tensor with the PPM content (BGR) image_loader->fill_planar_tensor(tensor, _bgr); // Preprocess tensor if(_preprocessor) { _preprocessor->preprocess(tensor); } } _already_loaded = !_already_loaded; return _already_loaded; } ValidationInputAccessor::ValidationInputAccessor(const std::string &image_list, std::string images_path, std::unique_ptr preprocessor, bool bgr, unsigned int start, unsigned int end, std::ostream &output_stream) : _path(std::move(images_path)), _images(), _preprocessor(std::move(preprocessor)), _bgr(bgr), _offset(0), _output_stream(output_stream) { ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!"); std::ifstream ifs; try { ifs.exceptions(std::ifstream::badbit); ifs.open(image_list, std::ios::in | std::ios::binary); // Parse image names unsigned int counter = 0; for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter) { // Add image to process if withing range if(counter >= start) { std::stringstream linestream(line); std::string image_name; linestream >> image_name; _images.emplace_back(std::move(image_name)); } } } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what()); } } bool ValidationInputAccessor::access_tensor(arm_compute::ITensor &tensor) { bool ret = _offset < _images.size(); if(ret) { utils::JPEGLoader jpeg; // Open JPEG file std::string image_name = _path + _images[_offset++]; jpeg.open(image_name); _output_stream << "[" << _offset << "/" << _images.size() << "] Validating " << image_name << std::endl; // Get permutated shape and permutation parameters TensorShape permuted_shape = tensor.info()->tensor_shape(); arm_compute::PermutationVector perm; if(tensor.info()->data_layout() != DataLayout::NCHW) { std::tie(permuted_shape, perm) = compute_permutation_parameters(tensor.info()->tensor_shape(), tensor.info()->data_layout()); } ARM_COMPUTE_EXIT_ON_MSG_VAR(jpeg.width() != permuted_shape.x() || jpeg.height() != permuted_shape.y(), "Failed to load image file: dimensions [%d,%d] not correct, expected [%zu,%zu ].", jpeg.width(), jpeg.height(), permuted_shape.x(), permuted_shape.y()); // Fill the tensor with the JPEG content (BGR) jpeg.fill_planar_tensor(tensor, _bgr); // Preprocess tensor if(_preprocessor) { _preprocessor->preprocess(tensor); } } return ret; } ValidationOutputAccessor::ValidationOutputAccessor(const std::string &image_list, std::ostream &output_stream, unsigned int start, unsigned int end) : _results(), _output_stream(output_stream), _offset(0), _positive_samples_top1(0), _positive_samples_top5(0) { ARM_COMPUTE_EXIT_ON_MSG(start > end, "Invalid validation range!"); std::ifstream ifs; try { ifs.exceptions(std::ifstream::badbit); ifs.open(image_list, std::ios::in | std::ios::binary); // Parse image correctly classified labels unsigned int counter = 0; for(std::string line; !std::getline(ifs, line).fail() && counter <= end; ++counter) { // Add label if within range if(counter >= start) { std::stringstream linestream(line); std::string image_name; int result; linestream >> image_name >> result; _results.emplace_back(result); } } } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", image_list.c_str(), e.what()); } } void ValidationOutputAccessor::reset() { _offset = 0; _positive_samples_top1 = 0; _positive_samples_top5 = 0; } bool ValidationOutputAccessor::access_tensor(arm_compute::ITensor &tensor) { bool ret = _offset < _results.size(); if(ret) { // Get results std::vector tensor_results; switch(tensor.info()->data_type()) { case DataType::QASYMM8: tensor_results = access_predictions_tensor(tensor); break; case DataType::F16: tensor_results = access_predictions_tensor(tensor); break; case DataType::F32: tensor_results = access_predictions_tensor(tensor); break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } // Check if tensor results are within top-n accuracy size_t correct_label = _results[_offset++]; aggregate_sample(tensor_results, _positive_samples_top1, 1, correct_label); aggregate_sample(tensor_results, _positive_samples_top5, 5, correct_label); } // Report top_n accuracy if(_offset >= _results.size()) { report_top_n(1, _results.size(), _positive_samples_top1); report_top_n(5, _results.size(), _positive_samples_top5); } return ret; } template std::vector ValidationOutputAccessor::access_predictions_tensor(arm_compute::ITensor &tensor) { // Get the predicted class std::vector index; const auto output_net = reinterpret_cast(tensor.buffer() + tensor.info()->offset_first_element_in_bytes()); const size_t num_classes = tensor.info()->dimension(0); index.resize(num_classes); // Sort results std::iota(std::begin(index), std::end(index), static_cast(0)); std::sort(std::begin(index), std::end(index), [&](size_t a, size_t b) { return output_net[a] > output_net[b]; }); return index; } void ValidationOutputAccessor::aggregate_sample(const std::vector &res, size_t &positive_samples, size_t top_n, size_t correct_label) { auto is_valid_label = [correct_label](size_t label) { return label == correct_label; }; if(std::any_of(std::begin(res), std::begin(res) + top_n, is_valid_label)) { ++positive_samples; } } void ValidationOutputAccessor::report_top_n(size_t top_n, size_t total_samples, size_t positive_samples) { size_t negative_samples = total_samples - positive_samples; float accuracy = positive_samples / static_cast(total_samples); _output_stream << "----------Top " << top_n << " accuracy ----------" << std::endl << std::endl; _output_stream << "Positive samples : " << positive_samples << std::endl; _output_stream << "Negative samples : " << negative_samples << std::endl; _output_stream << "Accuracy : " << accuracy << std::endl; } DetectionOutputAccessor::DetectionOutputAccessor(const std::string &labels_path, std::vector &imgs_tensor_shapes, std::ostream &output_stream) : _labels(), _tensor_shapes(std::move(imgs_tensor_shapes)), _output_stream(output_stream) { _labels.clear(); std::ifstream ifs; try { ifs.exceptions(std::ifstream::badbit); ifs.open(labels_path, std::ios::in | std::ios::binary); for(std::string line; !std::getline(ifs, line).fail();) { _labels.emplace_back(line); } } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what()); } } template void DetectionOutputAccessor::access_predictions_tensor(ITensor &tensor) { const size_t num_detection = tensor.info()->valid_region().shape.y(); const auto output_prt = reinterpret_cast(tensor.buffer() + tensor.info()->offset_first_element_in_bytes()); if(num_detection > 0) { _output_stream << "---------------------- Detections ----------------------" << std::endl << std::endl; _output_stream << std::left << std::setprecision(4) << std::setw(8) << "Image | " << std::setw(8) << "Label | " << std::setw(12) << "Confidence | " << "[ xmin, ymin, xmax, ymax ]" << std::endl; for(size_t i = 0; i < num_detection; ++i) { auto im = static_cast(output_prt[i * 7]); _output_stream << std::setw(8) << im << std::setw(8) << _labels[output_prt[i * 7 + 1]] << std::setw(12) << output_prt[i * 7 + 2] << " [" << (output_prt[i * 7 + 3] * _tensor_shapes[im].x()) << ", " << (output_prt[i * 7 + 4] * _tensor_shapes[im].y()) << ", " << (output_prt[i * 7 + 5] * _tensor_shapes[im].x()) << ", " << (output_prt[i * 7 + 6] * _tensor_shapes[im].y()) << "]" << std::endl; } } else { _output_stream << "No detection found." << std::endl; } } bool DetectionOutputAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32); switch(tensor.info()->data_type()) { case DataType::F32: access_predictions_tensor(tensor); break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return false; } TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream) : _labels(), _output_stream(output_stream), _top_n(top_n) { _labels.clear(); std::ifstream ifs; try { ifs.exceptions(std::ifstream::badbit); ifs.open(labels_path, std::ios::in | std::ios::binary); for(std::string line; !std::getline(ifs, line).fail();) { _labels.emplace_back(line); } } catch(const std::ifstream::failure &e) { ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", labels_path.c_str(), e.what()); } } template void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor) { // Get the predicted class std::vector classes_prob; std::vector index; const auto output_net = reinterpret_cast(tensor.buffer() + tensor.info()->offset_first_element_in_bytes()); const size_t num_classes = tensor.info()->dimension(0); classes_prob.resize(num_classes); index.resize(num_classes); std::copy(output_net, output_net + num_classes, classes_prob.begin()); // Sort results std::iota(std::begin(index), std::end(index), static_cast(0)); std::sort(std::begin(index), std::end(index), [&](size_t a, size_t b) { return classes_prob[a] > classes_prob[b]; }); _output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl << std::endl; for(size_t i = 0; i < _top_n; ++i) { _output_stream << std::fixed << std::setprecision(4) << +classes_prob[index.at(i)] << " - [id = " << index.at(i) << "]" << ", " << _labels[index.at(i)] << std::endl; } } bool TopNPredictionsAccessor::access_tensor(ITensor &tensor) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8); ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0)); switch(tensor.info()->data_type()) { case DataType::QASYMM8: access_predictions_tensor(tensor); break; case DataType::F32: access_predictions_tensor(tensor); break; default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return false; } RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed) : _lower(lower), _upper(upper), _seed(seed) { } template void RandomAccessor::fill(ITensor &tensor, D &&distribution) { std::mt19937 gen(_seed); if(tensor.info()->padding().empty() && (dynamic_cast(&tensor) == nullptr)) { for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size()) { const auto value = static_cast(distribution(gen)); *reinterpret_cast(tensor.buffer() + offset) = value; } } else { // If tensor has padding accessing tensor elements through execution window. Window window; window.use_tensor_dimensions(tensor.info()->tensor_shape()); execute_window_loop(window, [&](const Coordinates & id) { const auto value = static_cast(distribution(gen)); *reinterpret_cast(tensor.ptr_to_element(id)) = value; }); } } bool RandomAccessor::access_tensor(ITensor &tensor) { switch(tensor.info()->data_type()) { case DataType::QASYMM8: case DataType::U8: { std::uniform_int_distribution distribution_u8(_lower.get(), _upper.get()); fill(tensor, distribution_u8); break; } case DataType::S8: { std::uniform_int_distribution distribution_s8(_lower.get(), _upper.get()); fill(tensor, distribution_s8); break; } case DataType::U16: { std::uniform_int_distribution distribution_u16(_lower.get(), _upper.get()); fill(tensor, distribution_u16); break; } case DataType::S16: { std::uniform_int_distribution distribution_s16(_lower.get(), _upper.get()); fill(tensor, distribution_s16); break; } case DataType::U32: { std::uniform_int_distribution distribution_u32(_lower.get(), _upper.get()); fill(tensor, distribution_u32); break; } case DataType::S32: { std::uniform_int_distribution distribution_s32(_lower.get(), _upper.get()); fill(tensor, distribution_s32); break; } case DataType::U64: { std::uniform_int_distribution distribution_u64(_lower.get(), _upper.get()); fill(tensor, distribution_u64); break; } case DataType::S64: { std::uniform_int_distribution distribution_s64(_lower.get(), _upper.get()); fill(tensor, distribution_s64); break; } case DataType::F16: { std::uniform_real_distribution distribution_f16(_lower.get(), _upper.get()); fill(tensor, distribution_f16); break; } case DataType::F32: { std::uniform_real_distribution distribution_f32(_lower.get(), _upper.get()); fill(tensor, distribution_f32); break; } case DataType::F64: { std::uniform_real_distribution distribution_f64(_lower.get(), _upper.get()); fill(tensor, distribution_f64); break; } default: ARM_COMPUTE_ERROR("NOT SUPPORTED!"); } return true; } NumPyBinLoader::NumPyBinLoader(std::string filename, DataLayout file_layout) : _already_loaded(false), _filename(std::move(filename)), _file_layout(file_layout) { } bool NumPyBinLoader::access_tensor(ITensor &tensor) { if(!_already_loaded) { utils::NPYLoader loader; loader.open(_filename, _file_layout); loader.fill_tensor(tensor); } _already_loaded = !_already_loaded; return _already_loaded; }