/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_ #define ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_ #include #include #include "base/macros.h" #include "debug/elf_compilation_unit.h" #include "debug/src_map_elem.h" #include "dex/dex_file-inl.h" #include "dwarf/debug_line_opcode_writer.h" #include "dwarf/headers.h" #include "elf/elf_builder.h" #include "oat_file.h" #include "stack_map.h" namespace art HIDDEN { namespace debug { using PositionInfos = std::vector; template class ElfDebugLineWriter { using Elf_Addr = typename ElfTypes::Addr; public: explicit ElfDebugLineWriter(ElfBuilder* builder) : builder_(builder) { } void Start() { builder_->GetDebugLine()->Start(); } // Write line table for given set of methods. // Returns the number of bytes written. size_t WriteCompilationUnit(ElfCompilationUnit& compilation_unit) { const InstructionSet isa = builder_->GetIsa(); const bool is64bit = Is64BitInstructionSet(isa); const Elf_Addr base_address = compilation_unit.is_code_address_text_relative ? builder_->GetText()->GetAddress() : 0; compilation_unit.debug_line_offset = builder_->GetDebugLine()->GetPosition(); std::vector files; std::unordered_map files_map; std::vector directories; std::unordered_map directories_map; int code_factor_bits_ = 0; int dwarf_isa = -1; switch (isa) { case InstructionSet::kArm: // arm actually means thumb2. case InstructionSet::kThumb2: code_factor_bits_ = 1; // 16-bit instuctions dwarf_isa = 1; // DW_ISA_ARM_thumb. break; case InstructionSet::kArm64: code_factor_bits_ = 2; // 32-bit instructions break; case InstructionSet::kNone: case InstructionSet::kRiscv64: case InstructionSet::kX86: case InstructionSet::kX86_64: break; } std::unordered_set seen_addresses(compilation_unit.methods.size()); dwarf::DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_); for (const MethodDebugInfo* mi : compilation_unit.methods) { // Ignore function if we have already generated line table for the same address. // It would confuse the debugger and the DWARF specification forbids it. // We allow the line table for method to be replicated in different compilation unit. // This ensures that each compilation unit contains line table for all its methods. if (!seen_addresses.insert(mi->code_address).second) { continue; } uint32_t prologue_end = std::numeric_limits::max(); std::vector pc2dex_map; if (mi->code_info != nullptr) { // Use stack maps to create mapping table from pc to dex. const CodeInfo code_info(mi->code_info); pc2dex_map.reserve(code_info.GetNumberOfStackMaps()); for (StackMap stack_map : code_info.GetStackMaps()) { const uint32_t pc = stack_map.GetNativePcOffset(isa); const int32_t dex = stack_map.GetDexPc(); pc2dex_map.push_back({pc, dex}); if (stack_map.HasDexRegisterMap()) { // Guess that the first map with local variables is the end of prologue. prologue_end = std::min(prologue_end, pc); } } std::sort(pc2dex_map.begin(), pc2dex_map.end()); } if (pc2dex_map.empty()) { continue; } // Compensate for compiler's off-by-one-instruction error. // // The compiler generates stackmap with PC *after* the branch instruction // (because this is the PC which is easier to obtain when unwinding). // // However, the debugger is more clever and it will ask us for line-number // mapping at the location of the branch instruction (since the following // instruction could belong to other line, this is the correct thing to do). // // So we really want to just decrement the PC by one instruction so that the // branch instruction is covered as well. However, we do not know the size // of the previous instruction, and we can not subtract just a fixed amount // (the debugger would trust us that the PC is valid; it might try to set // breakpoint there at some point, and setting breakpoint in mid-instruction // would make the process crash in spectacular way). // // Therefore, we say that the PC which the compiler gave us for the stackmap // is the end of its associated address range, and we use the PC from the // previous stack map as the start of the range. This ensures that the PC is // valid and that the branch instruction is covered. // // This ensures we have correct line number mapping at call sites (which is // important for backtraces), but there is nothing we can do for non-call // sites (so stepping through optimized code in debugger is not possible). // // We do not adjust the stackmaps if the code was compiled as debuggable. // In that case, the stackmaps should accurately cover all instructions. if (!mi->is_native_debuggable) { for (size_t i = pc2dex_map.size() - 1; i > 0; --i) { pc2dex_map[i].from_ = pc2dex_map[i - 1].from_; } pc2dex_map[0].from_ = 0; } Elf_Addr method_address = base_address + mi->code_address; PositionInfos dex2line_map; const DexFile* dex = mi->dex_file; DCHECK(dex != nullptr); CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index); if (!accessor.DecodeDebugPositionInfo( [&](const DexFile::PositionInfo& entry) { dex2line_map.push_back(entry); return false; })) { continue; } if (dex2line_map.empty()) { continue; } opcodes.SetAddress(method_address); if (dwarf_isa != -1) { opcodes.SetISA(dwarf_isa); } // Get and deduplicate directory and filename. int file_index = 0; // 0 - primary source file of the compilation. auto& dex_class_def = dex->GetClassDef(mi->class_def_index); const char* source_file = dex->GetSourceFile(dex_class_def); if (source_file != nullptr) { std::string file_name(source_file); size_t file_name_slash = file_name.find_last_of('/'); std::string class_name(dex->GetClassDescriptor(dex_class_def)); size_t class_name_slash = class_name.find_last_of('/'); std::string full_path(file_name); // Guess directory from package name. int directory_index = 0; // 0 - current directory of the compilation. if (file_name_slash == std::string::npos && // Just filename. class_name.front() == 'L' && // Type descriptor for a class. class_name_slash != std::string::npos) { // Has package name. std::string package_name = class_name.substr(1, class_name_slash - 1); auto it = directories_map.find(package_name); if (it == directories_map.end()) { directory_index = 1 + directories.size(); directories_map.emplace(package_name, directory_index); directories.push_back(package_name); } else { directory_index = it->second; } full_path = package_name + "/" + file_name; } // Add file entry. auto it2 = files_map.find(full_path); if (it2 == files_map.end()) { file_index = 1 + files.size(); files_map.emplace(full_path, file_index); files.push_back(dwarf::FileEntry { file_name, directory_index, 0, // Modification time - NA. 0, // File size - NA. }); } else { file_index = it2->second; } } opcodes.SetFile(file_index); // Generate mapping opcodes from PC to Java lines. if (file_index != 0) { // If the method was not compiled as native-debuggable, we still generate all available // lines, but we try to prevent the debugger from stepping and setting breakpoints since // the information is too inaccurate for that (breakpoints would be set after the calls). const bool default_is_stmt = mi->is_native_debuggable; bool first = true; for (SrcMapElem pc2dex : pc2dex_map) { uint32_t pc = pc2dex.from_; int dex_pc = pc2dex.to_; // Find mapping with address with is greater than our dex pc; then go back one step. auto dex2line = std::upper_bound( dex2line_map.begin(), dex2line_map.end(), dex_pc, [](uint32_t address, const DexFile::PositionInfo& entry) { return address < entry.address_; }); // Look for first valid mapping after the prologue. if (dex2line != dex2line_map.begin() && pc >= prologue_end) { int line = (--dex2line)->line_; if (first) { first = false; if (pc > 0) { // Assume that any preceding code is prologue. int first_line = dex2line_map.front().line_; // Prologue is not a sensible place for a breakpoint. opcodes.SetIsStmt(false); opcodes.AddRow(method_address, first_line); opcodes.SetPrologueEnd(); } opcodes.SetIsStmt(default_is_stmt); opcodes.AddRow(method_address + pc, line); } else if (line != opcodes.CurrentLine()) { opcodes.SetIsStmt(default_is_stmt); opcodes.AddRow(method_address + pc, line); } } } } else { // line 0 - instruction cannot be attributed to any source line. opcodes.AddRow(method_address, 0); } opcodes.AdvancePC(method_address + mi->code_size); opcodes.EndSequence(); } std::vector buffer; buffer.reserve(opcodes.data()->size() + KB); WriteDebugLineTable(directories, files, opcodes, &buffer); builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size()); return buffer.size(); } void End() { builder_->GetDebugLine()->End(); } private: ElfBuilder* builder_; }; } // namespace debug } // namespace art #endif // ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_