/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Test is in compiler, as it uses compiler related code. #include "verifier/verifier_deps.h" #include "art_method-inl.h" #include "base/indenter.h" #include "class_linker.h" #include "common_compiler_driver_test.h" #include "compiler_callbacks.h" #include "dex/class_accessor-inl.h" #include "dex/class_iterator.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_types.h" #include "dex/verification_results.h" #include "driver/compiler_driver-inl.h" #include "driver/compiler_options.h" #include "handle_scope-inl.h" #include "mirror/class_loader.h" #include "runtime.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "utils/atomic_dex_ref_map-inl.h" #include "verifier/method_verifier-inl.h" namespace art { namespace verifier { class VerifierDepsCompilerCallbacks : public CompilerCallbacks { public: VerifierDepsCompilerCallbacks() : CompilerCallbacks(CompilerCallbacks::CallbackMode::kCompileApp), deps_(nullptr) {} void AddUncompilableMethod(MethodReference ref ATTRIBUTE_UNUSED) override {} void AddUncompilableClass(ClassReference ref ATTRIBUTE_UNUSED) override {} void ClassRejected(ClassReference ref ATTRIBUTE_UNUSED) override {} verifier::VerifierDeps* GetVerifierDeps() const override { return deps_; } void SetVerifierDeps(verifier::VerifierDeps* deps) override { deps_ = deps; } private: verifier::VerifierDeps* deps_; }; class VerifierDepsTest : public CommonCompilerDriverTest { public: VerifierDepsTest() { this->use_boot_image_ = true; // Make the Runtime creation cheaper. } void SetUpRuntimeOptions(RuntimeOptions* options) override { CommonCompilerTest::SetUpRuntimeOptions(options); callbacks_.reset(new VerifierDepsCompilerCallbacks()); } ObjPtr FindClassByName(ScopedObjectAccess& soa, const std::string& name) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(soa.Self()); Handle class_loader_handle( hs.NewHandle(soa.Decode(class_loader_))); ObjPtr klass = class_linker_->FindClass(soa.Self(), name.c_str(), class_loader_handle); if (klass == nullptr) { DCHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } return klass; } void SetupCompilerDriver() { compiler_options_->image_type_ = CompilerOptions::ImageType::kNone; compiler_driver_->InitializeThreadPools(); } void VerifyWithCompilerDriver(verifier::VerifierDeps* verifier_deps) { TimingLogger timings("Verify", false, false); // The compiler driver handles the verifier deps in the callbacks, so // remove what this class did for unit testing. if (verifier_deps == nullptr) { // Create some verifier deps by default if they are not already specified. verifier_deps = new verifier::VerifierDeps(dex_files_); verifier_deps_.reset(verifier_deps); } callbacks_->SetVerifierDeps(verifier_deps); compiler_driver_->Verify(class_loader_, dex_files_, &timings); callbacks_->SetVerifierDeps(nullptr); } void SetVerifierDeps(const std::vector& dex_files) { verifier_deps_.reset(new verifier::VerifierDeps(dex_files)); VerifierDepsCompilerCallbacks* callbacks = reinterpret_cast(callbacks_.get()); callbacks->SetVerifierDeps(verifier_deps_.get()); } void LoadDexFile(ScopedObjectAccess& soa, const char* name1, const char* name2 = nullptr) REQUIRES_SHARED(Locks::mutator_lock_) { class_loader_ = (name2 == nullptr) ? LoadDex(name1) : LoadMultiDex(name1, name2); dex_files_ = GetDexFiles(class_loader_); primary_dex_file_ = dex_files_.front(); SetVerifierDeps(dex_files_); StackHandleScope<1> hs(soa.Self()); Handle loader = hs.NewHandle(soa.Decode(class_loader_)); for (const DexFile* dex_file : dex_files_) { class_linker_->RegisterDexFile(*dex_file, loader.Get()); } SetDexFilesForOatFile(dex_files_); } void LoadDexFile(ScopedObjectAccess& soa) REQUIRES_SHARED(Locks::mutator_lock_) { LoadDexFile(soa, "VerifierDeps"); CHECK_EQ(dex_files_.size(), 1u); klass_Main_ = FindClassByName(soa, "LMain;"); CHECK(klass_Main_ != nullptr); } bool VerifyMethod(const std::string& method_name) { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa); StackHandleScope<2> hs(soa.Self()); Handle class_loader_handle( hs.NewHandle(soa.Decode(class_loader_))); Handle dex_cache_handle(hs.NewHandle(klass_Main_->GetDexCache())); const dex::ClassDef* class_def = klass_Main_->GetClassDef(); ClassAccessor accessor(*primary_dex_file_, *class_def); bool has_failures = true; bool found_method = false; for (const ClassAccessor::Method& method : accessor.GetMethods()) { ArtMethod* resolved_method = class_linker_->ResolveMethod( method.GetIndex(), dex_cache_handle, class_loader_handle, /* referrer= */ nullptr, method.GetInvokeType(class_def->access_flags_)); CHECK(resolved_method != nullptr); if (method_name == resolved_method->GetName()) { std::unique_ptr verifier( MethodVerifier::CreateVerifier(soa.Self(), callbacks_->GetVerifierDeps(), primary_dex_file_, dex_cache_handle, class_loader_handle, *class_def, method.GetCodeItem(), method.GetIndex(), method.GetAccessFlags(), /* can_load_classes= */ true, /* verify to dump */ false, /* allow_thread_suspension= */ true, /* api_level= */ 0)); verifier->Verify(); soa.Self()->SetVerifierDeps(nullptr); has_failures = verifier->HasFailures(); found_method = true; } } CHECK(found_method) << "Expected to find method " << method_name; return !has_failures; } void VerifyDexFile(const char* multidex = nullptr) { { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa, "VerifierDeps", multidex); } SetupCompilerDriver(); VerifyWithCompilerDriver(/* verifier_deps= */ nullptr); } bool TestAssignabilityRecording(const std::string& dst, const std::string& src) { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa); StackHandleScope<1> hs(soa.Self()); Handle klass_dst = hs.NewHandle(FindClassByName(soa, dst)); DCHECK(klass_dst != nullptr) << dst; ObjPtr klass_src = FindClassByName(soa, src); DCHECK(klass_src != nullptr) << src; verifier_deps_->AddAssignability(*primary_dex_file_, primary_dex_file_->GetClassDef(0), klass_dst.Get(), klass_src); return true; } // Check that the status of classes in `class_loader_` match the // expected status in `deps`. void VerifyClassStatus(const verifier::VerifierDeps& deps) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle class_loader_handle( hs.NewHandle(soa.Decode(class_loader_))); MutableHandle cls(hs.NewHandle(nullptr)); for (const DexFile* dex_file : dex_files_) { const std::vector& verified_classes = deps.GetVerifiedClasses(*dex_file); ASSERT_EQ(verified_classes.size(), dex_file->NumClassDefs()); for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) { const dex::ClassDef& class_def = dex_file->GetClassDef(i); const char* descriptor = dex_file->GetClassDescriptor(class_def); cls.Assign(class_linker_->FindClass(soa.Self(), descriptor, class_loader_handle)); if (cls == nullptr) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } else if (&cls->GetDexFile() != dex_file) { // Ignore classes from different dex files. } else if (verified_classes[i]) { ASSERT_EQ(cls->GetStatus(), ClassStatus::kVerifiedNeedsAccessChecks); } else { ASSERT_LT(cls->GetStatus(), ClassStatus::kVerified); } } } } uint16_t GetClassDefIndex(const std::string& cls, const DexFile& dex_file) { const dex::TypeId* type_id = dex_file.FindTypeId(cls.c_str()); DCHECK(type_id != nullptr); dex::TypeIndex type_idx = dex_file.GetIndexForTypeId(*type_id); const dex::ClassDef* class_def = dex_file.FindClassDef(type_idx); DCHECK(class_def != nullptr); return dex_file.GetIndexForClassDef(*class_def); } bool HasVerifiedClass(const std::string& cls) { return HasVerifiedClass(cls, *primary_dex_file_); } bool HasUnverifiedClass(const std::string& cls) { return !HasVerifiedClass(cls, *primary_dex_file_); } bool HasUnverifiedClass(const std::string& cls, const DexFile& dex_file) { return !HasVerifiedClass(cls, dex_file); } bool HasVerifiedClass(const std::string& cls, const DexFile& dex_file) { uint16_t class_def_idx = GetClassDefIndex(cls, dex_file); return verifier_deps_->GetVerifiedClasses(dex_file)[class_def_idx]; } // Iterates over all assignability records and tries to find an entry which // matches the expected destination/source pair. bool HasAssignable(const std::string& expected_destination, const std::string& expected_source) const { for (auto& dex_dep : verifier_deps_->dex_deps_) { const DexFile& dex_file = *dex_dep.first; auto& storage = dex_dep.second->assignable_types_; for (auto& set : storage) { for (auto& entry : set) { std::string actual_destination = verifier_deps_->GetStringFromId(dex_file, entry.GetDestination()); std::string actual_source = verifier_deps_->GetStringFromId(dex_file, entry.GetSource()); if ((expected_destination == actual_destination) && (expected_source == actual_source)) { return true; } } } } return false; } size_t NumberOfCompiledDexFiles() { return verifier_deps_->dex_deps_.size(); } bool HasBoolValue(const std::vector& vec, bool value) { return std::count(vec.begin(), vec.end(), value) > 0; } bool HasEachKindOfRecord() { bool has_strings = false; bool has_assignability = false; bool has_verified_classes = false; bool has_unverified_classes = false; for (auto& entry : verifier_deps_->dex_deps_) { has_strings |= !entry.second->strings_.empty(); has_assignability |= !entry.second->assignable_types_.empty(); has_verified_classes |= HasBoolValue(entry.second->verified_classes_, true); has_unverified_classes |= HasBoolValue(entry.second->verified_classes_, false); } return has_strings && has_assignability && has_verified_classes && has_unverified_classes; } // Load the dex file again with a new class loader, decode the VerifierDeps // in `buffer`, allow the caller to modify the deps and then run validation. template bool RunValidation(Fn fn, const std::vector& buffer, std::string* error_msg) { ScopedObjectAccess soa(Thread::Current()); jobject second_loader = LoadDex("VerifierDeps"); const auto& second_dex_files = GetDexFiles(second_loader); VerifierDeps decoded_deps(second_dex_files, /*output_only=*/ false); bool parsed = decoded_deps.ParseStoredData(second_dex_files, ArrayRef(buffer)); CHECK(parsed); VerifierDeps::DexFileDeps* decoded_dex_deps = decoded_deps.GetDexFileDeps(*second_dex_files.front()); // Let the test modify the dependencies. fn(*decoded_dex_deps); StackHandleScope<1> hs(soa.Self()); Handle new_class_loader = hs.NewHandle(soa.Decode(second_loader)); return decoded_deps.ValidateDependencies(soa.Self(), new_class_loader, second_dex_files, error_msg); } std::unique_ptr verifier_deps_; std::vector dex_files_; const DexFile* primary_dex_file_; jobject class_loader_; ObjPtr klass_Main_; }; TEST_F(VerifierDepsTest, StringToId) { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa); dex::StringIndex id_Main1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;"); ASSERT_LT(id_Main1.index_, primary_dex_file_->NumStringIds()); ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main1)); dex::StringIndex id_Main2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "LMain;"); ASSERT_LT(id_Main2.index_, primary_dex_file_->NumStringIds()); ASSERT_EQ("LMain;", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Main2)); dex::StringIndex id_Lorem1 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum"); ASSERT_GE(id_Lorem1.index_, primary_dex_file_->NumStringIds()); ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem1)); dex::StringIndex id_Lorem2 = verifier_deps_->GetIdFromString(*primary_dex_file_, "Lorem ipsum"); ASSERT_GE(id_Lorem2.index_, primary_dex_file_->NumStringIds()); ASSERT_EQ("Lorem ipsum", verifier_deps_->GetStringFromId(*primary_dex_file_, id_Lorem2)); ASSERT_EQ(id_Main1, id_Main2); ASSERT_EQ(id_Lorem1, id_Lorem2); ASSERT_NE(id_Main1, id_Lorem1); } TEST_F(VerifierDepsTest, Assignable_BothInBoot) { ASSERT_TRUE(TestAssignabilityRecording(/* dst= */ "Ljava/util/TimeZone;", /* src= */ "Ljava/util/SimpleTimeZone;")); ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;")); } TEST_F(VerifierDepsTest, Assignable_BothArrays_Resolved) { ASSERT_TRUE(TestAssignabilityRecording(/* dst= */ "[[Ljava/util/TimeZone;", /* src= */ "[[Ljava/util/SimpleTimeZone;")); // If the component types of both arrays are resolved, we optimize the list of // dependencies by recording a dependency on the component types. ASSERT_FALSE(HasAssignable("[[Ljava/util/TimeZone;", "[[Ljava/util/SimpleTimeZone;")); ASSERT_FALSE(HasAssignable("[Ljava/util/TimeZone;", "[Ljava/util/SimpleTimeZone;")); ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;")); } TEST_F(VerifierDepsTest, ReturnType_Reference) { ASSERT_TRUE(VerifyMethod("ReturnType_Reference")); ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;")); } TEST_F(VerifierDepsTest, InvokeArgumentType) { ASSERT_TRUE(VerifyMethod("InvokeArgumentType")); ASSERT_TRUE(HasAssignable("Ljava/util/TimeZone;", "Ljava/util/SimpleTimeZone;")); } TEST_F(VerifierDepsTest, MergeTypes_RegisterLines) { ASSERT_TRUE(VerifyMethod("MergeTypes_RegisterLines")); ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "LMySocketTimeoutException;")); ASSERT_TRUE(HasAssignable( "Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;")); } TEST_F(VerifierDepsTest, MergeTypes_IfInstanceOf) { ASSERT_TRUE(VerifyMethod("MergeTypes_IfInstanceOf")); ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;")); ASSERT_TRUE(HasAssignable( "Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;")); } TEST_F(VerifierDepsTest, MergeTypes_Unresolved) { ASSERT_TRUE(VerifyMethod("MergeTypes_Unresolved")); ASSERT_TRUE(HasAssignable("Ljava/lang/Exception;", "Ljava/net/SocketTimeoutException;")); ASSERT_TRUE(HasAssignable( "Ljava/lang/Exception;", "Ljava/util/concurrent/TimeoutException;")); } TEST_F(VerifierDepsTest, Throw) { ASSERT_TRUE(VerifyMethod("Throw")); ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/lang/IllegalStateException;")); } TEST_F(VerifierDepsTest, MoveException_Resolved) { ASSERT_TRUE(VerifyMethod("MoveException_Resolved")); // Testing that all exception types are assignable to Throwable. ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/InterruptedIOException;")); ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/net/SocketTimeoutException;")); ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/util/zip/ZipException;")); // Testing that the merge type is assignable to Throwable. ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "Ljava/io/IOException;")); // Merging of exception types. ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/io/InterruptedIOException;")); ASSERT_TRUE(HasAssignable("Ljava/io/IOException;", "Ljava/util/zip/ZipException;")); ASSERT_TRUE(HasAssignable( "Ljava/io/InterruptedIOException;", "Ljava/net/SocketTimeoutException;")); } TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInReferenced) { ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInReferenced")); ASSERT_TRUE(HasAssignable( "Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;")); } TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass1) { ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass1")); ASSERT_TRUE(HasAssignable( "Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;")); } TEST_F(VerifierDepsTest, InstanceField_Resolved_DeclaredInSuperclass2) { ASSERT_TRUE(VerifyMethod("InstanceField_Resolved_DeclaredInSuperclass2")); ASSERT_TRUE(HasAssignable( "Ljava/io/InterruptedIOException;", "LMySocketTimeoutException;")); } TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInReferenced) { ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInReferenced")); // Type dependency on `this` argument. ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;")); } TEST_F(VerifierDepsTest, InvokeVirtual_Resolved_DeclaredInSuperclass1) { ASSERT_TRUE(VerifyMethod("InvokeVirtual_Resolved_DeclaredInSuperclass1")); // Type dependency on `this` argument. ASSERT_TRUE(HasAssignable("Ljava/lang/Throwable;", "LMySocketTimeoutException;")); } TEST_F(VerifierDepsTest, InvokeSuper_ThisAssignable) { ASSERT_TRUE(VerifyMethod("InvokeSuper_ThisAssignable")); ASSERT_TRUE(HasAssignable("Ljava/lang/Runnable;", "LMain;")); } TEST_F(VerifierDepsTest, EncodeDecode) { VerifyDexFile(); ASSERT_EQ(1u, NumberOfCompiledDexFiles()); ASSERT_TRUE(HasEachKindOfRecord()); std::vector buffer; verifier_deps_->Encode(dex_files_, &buffer); ASSERT_FALSE(buffer.empty()); VerifierDeps decoded_deps(dex_files_, /*output_only=*/ false); bool parsed = decoded_deps.ParseStoredData(dex_files_, ArrayRef(buffer)); ASSERT_TRUE(parsed); ASSERT_TRUE(verifier_deps_->Equals(decoded_deps)); } TEST_F(VerifierDepsTest, EncodeDecodeMulti) { VerifyDexFile("MultiDex"); ASSERT_GT(NumberOfCompiledDexFiles(), 1u); std::vector buffer; verifier_deps_->Encode(dex_files_, &buffer); ASSERT_FALSE(buffer.empty()); // Create new DexFile, to mess with std::map order: the verifier deps used // to iterate over the map, which doesn't guarantee insertion order. We fixed // this by passing the expected order when encoding/decoding. std::vector> first_dex_files = OpenTestDexFiles("VerifierDeps"); std::vector> second_dex_files = OpenTestDexFiles("MultiDex"); std::vector dex_files; dex_files.reserve(first_dex_files.size() + second_dex_files.size()); for (auto& dex_file : first_dex_files) { dex_files.push_back(dex_file.get()); } for (auto& dex_file : second_dex_files) { dex_files.push_back(dex_file.get()); } // Dump the new verifier deps to ensure it can properly read the data. VerifierDeps decoded_deps(dex_files, /*output_only=*/ false); bool parsed = decoded_deps.ParseStoredData(dex_files, ArrayRef(buffer)); ASSERT_TRUE(parsed); std::ostringstream stream; VariableIndentationOutputStream os(&stream); decoded_deps.Dump(&os); } TEST_F(VerifierDepsTest, UnverifiedClasses) { VerifyDexFile(); ASSERT_FALSE(HasUnverifiedClass("LMyThread;")); // Test that a class with a soft failure is recorded. ASSERT_TRUE(HasUnverifiedClass("LMain;")); // Test that a class with hard failure is recorded. ASSERT_TRUE(HasUnverifiedClass("LMyVerificationFailure;")); // Test that a class with unresolved super and hard failure is recorded. ASSERT_TRUE(HasUnverifiedClass("LMyClassWithNoSuperButFailures;")); // Test that a class with unresolved super can be verified. ASSERT_TRUE(HasVerifiedClass("LMyClassWithNoSuper;")); } TEST_F(VerifierDepsTest, UnverifiedOrder) { ScopedObjectAccess soa(Thread::Current()); jobject loader = LoadDex("VerifierDeps"); std::vector dex_files = GetDexFiles(loader); ASSERT_GT(dex_files.size(), 0u); const DexFile* dex_file = dex_files[0]; VerifierDeps deps1(dex_files); deps1.MaybeRecordVerificationStatus(&deps1, *dex_file, dex_file->GetClassDef(0u), verifier::FailureKind::kHardFailure); deps1.MaybeRecordVerificationStatus(&deps1, *dex_file, dex_file->GetClassDef(1u), verifier::FailureKind::kHardFailure); VerifierDeps deps2(dex_files); deps2.MaybeRecordVerificationStatus(&deps2, *dex_file, dex_file->GetClassDef(1u), verifier::FailureKind::kHardFailure); deps2.MaybeRecordVerificationStatus(&deps2, *dex_file, dex_file->GetClassDef(0u), verifier::FailureKind::kHardFailure); std::vector buffer1; deps1.Encode(dex_files, &buffer1); std::vector buffer2; deps2.Encode(dex_files, &buffer2); EXPECT_EQ(buffer1, buffer2); } TEST_F(VerifierDepsTest, VerifyDeps) { std::string error_msg; VerifyDexFile(); ASSERT_EQ(1u, NumberOfCompiledDexFiles()); ASSERT_TRUE(HasEachKindOfRecord()); // When validating, we create a new class loader, as // the existing `class_loader_` may contain erroneous classes, // that ClassLinker::FindClass won't return. std::vector buffer; verifier_deps_->Encode(dex_files_, &buffer); ASSERT_FALSE(buffer.empty()); // Check that dependencies are satisfied after decoding `buffer`. ASSERT_TRUE(RunValidation([](VerifierDeps::DexFileDeps&) {}, buffer, &error_msg)) << error_msg; } TEST_F(VerifierDepsTest, CompilerDriver) { SetupCompilerDriver(); // Test both multi-dex and single-dex configuration. for (const char* multi : { "MultiDex", static_cast(nullptr) }) { // Test that the compiler driver behaves as expected when the dependencies // verify and when they don't verify. for (bool verify_failure : { false, true }) { { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa, "VerifierDeps", multi); } VerifyWithCompilerDriver(/* verifier_deps= */ nullptr); std::vector buffer; verifier_deps_->Encode(dex_files_, &buffer); { ScopedObjectAccess soa(Thread::Current()); LoadDexFile(soa, "VerifierDeps", multi); } VerifierDeps decoded_deps(dex_files_, /*output_only=*/ false); bool parsed = decoded_deps.ParseStoredData(dex_files_, ArrayRef(buffer)); ASSERT_TRUE(parsed); VerifyWithCompilerDriver(&decoded_deps); if (verify_failure) { ASSERT_FALSE(verifier_deps_ == nullptr); ASSERT_FALSE(verifier_deps_->Equals(decoded_deps)); } else { VerifyClassStatus(decoded_deps); } } } } TEST_F(VerifierDepsTest, MultiDexVerification) { VerifyDexFile("VerifierDepsMulti"); ASSERT_EQ(NumberOfCompiledDexFiles(), 2u); ASSERT_TRUE(HasUnverifiedClass("LMySoftVerificationFailure;", *dex_files_[1])); ASSERT_TRUE(HasUnverifiedClass("LMySub1SoftVerificationFailure;", *dex_files_[0])); ASSERT_TRUE(HasUnverifiedClass("LMySub2SoftVerificationFailure;", *dex_files_[0])); std::vector buffer; verifier_deps_->Encode(dex_files_, &buffer); ASSERT_FALSE(buffer.empty()); } } // namespace verifier } // namespace art