//===-- SanitizerCoverage.cpp - coverage instrumentation for sanitizers ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Coverage instrumentation done on LLVM IR level, works with Sanitizers. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/SpecialCaseList.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include "llvm/Passes/PassPlugin.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/IR/PassManager.h" #include "config.h" #include "debug.h" #include "afl-llvm-common.h" using namespace llvm; #define DEBUG_TYPE "sancov" const char SanCovTracePCIndirName[] = "__sanitizer_cov_trace_pc_indir"; const char SanCovTracePCName[] = "__sanitizer_cov_trace_pc"; const char SanCovTraceCmp1[] = "__sanitizer_cov_trace_cmp1"; const char SanCovTraceCmp2[] = "__sanitizer_cov_trace_cmp2"; const char SanCovTraceCmp4[] = "__sanitizer_cov_trace_cmp4"; const char SanCovTraceCmp8[] = "__sanitizer_cov_trace_cmp8"; const char SanCovTraceConstCmp1[] = "__sanitizer_cov_trace_const_cmp1"; const char SanCovTraceConstCmp2[] = "__sanitizer_cov_trace_const_cmp2"; const char SanCovTraceConstCmp4[] = "__sanitizer_cov_trace_const_cmp4"; const char SanCovTraceConstCmp8[] = "__sanitizer_cov_trace_const_cmp8"; const char SanCovTraceDiv4[] = "__sanitizer_cov_trace_div4"; const char SanCovTraceDiv8[] = "__sanitizer_cov_trace_div8"; const char SanCovTraceGep[] = "__sanitizer_cov_trace_gep"; const char SanCovTraceSwitchName[] = "__sanitizer_cov_trace_switch"; const char SanCovModuleCtorTracePcGuardName[] = "sancov.module_ctor_trace_pc_guard"; const char SanCovModuleCtor8bitCountersName[] = "sancov.module_ctor_8bit_counters"; const char SanCovModuleCtorBoolFlagName[] = "sancov.module_ctor_bool_flag"; static const uint64_t SanCtorAndDtorPriority = 2; const char SanCovTracePCGuardName[] = "__sanitizer_cov_trace_pc_guard"; const char SanCovTracePCGuardInitName[] = "__sanitizer_cov_trace_pc_guard_init"; const char SanCov8bitCountersInitName[] = "__sanitizer_cov_8bit_counters_init"; const char SanCovBoolFlagInitName[] = "__sanitizer_cov_bool_flag_init"; const char SanCovPCsInitName[] = "__sanitizer_cov_pcs_init"; const char SanCovGuardsSectionName[] = "sancov_guards"; const char SanCovCountersSectionName[] = "sancov_cntrs"; const char SanCovBoolFlagSectionName[] = "sancov_bools"; const char SanCovPCsSectionName[] = "sancov_pcs"; const char SanCovLowestStackName[] = "__sancov_lowest_stack"; static const char *skip_nozero; static const char *use_threadsafe_counters; namespace { SanitizerCoverageOptions OverrideFromCL(SanitizerCoverageOptions Options) { // Sets CoverageType and IndirectCalls. // SanitizerCoverageOptions CLOpts = getOptions(ClCoverageLevel); Options.CoverageType = SanitizerCoverageOptions::SCK_Edge; // std::max(Options.CoverageType, // CLOpts.CoverageType); Options.IndirectCalls = false; // CLOpts.IndirectCalls; Options.TraceCmp = false; //|= ClCMPTracing; Options.TraceDiv = false; //|= ClDIVTracing; Options.TraceGep = false; //|= ClGEPTracing; Options.TracePC = false; //|= ClTracePC; Options.TracePCGuard = true; // |= ClTracePCGuard; Options.Inline8bitCounters = 0; //|= ClInline8bitCounters; // Options.InlineBoolFlag = 0; //|= ClInlineBoolFlag; Options.PCTable = false; //|= ClCreatePCTable; Options.NoPrune = false; //|= !ClPruneBlocks; Options.StackDepth = false; //|= ClStackDepth; if (!Options.TracePCGuard && !Options.TracePC && !Options.Inline8bitCounters && !Options.StackDepth /*&& !Options.InlineBoolFlag*/) Options.TracePCGuard = true; // TracePCGuard is default. return Options; } using DomTreeCallback = function_ref; using PostDomTreeCallback = function_ref; class ModuleSanitizerCoverageAFL : public PassInfoMixin { public: ModuleSanitizerCoverageAFL( const SanitizerCoverageOptions &Options = SanitizerCoverageOptions()) : Options(OverrideFromCL(Options)) { } PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM); bool instrumentModule(Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback); private: void instrumentFunction(Function &F, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback); void InjectCoverageForIndirectCalls(Function & F, ArrayRef IndirCalls); void InjectTraceForCmp(Function &F, ArrayRef CmpTraceTargets); void InjectTraceForDiv(Function & F, ArrayRef DivTraceTargets); void InjectTraceForGep(Function & F, ArrayRef GepTraceTargets); void InjectTraceForSwitch(Function & F, ArrayRef SwitchTraceTargets); bool InjectCoverage(Function &F, ArrayRef AllBlocks, bool IsLeafFunc = true); GlobalVariable *CreateFunctionLocalArrayInSection(size_t NumElements, Function &F, Type *Ty, const char *Section); GlobalVariable *CreatePCArray(Function &F, ArrayRef AllBlocks); void CreateFunctionLocalArrays(Function &F, ArrayRef AllBlocks, uint32_t special); void InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx, bool IsLeafFunc = true); Function *CreateInitCallsForSections(Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, const char *Section); std::pair CreateSecStartEnd(Module &M, const char *Section, Type *Ty); void SetNoSanitizeMetadata(Instruction *I) { I->setMetadata(I->getModule()->getMDKindID("nosanitize"), MDNode::get(*C, None)); } std::string getSectionName(const std::string &Section) const; std::string getSectionStart(const std::string &Section) const; std::string getSectionEnd(const std::string &Section) const; FunctionCallee SanCovTracePCIndir; FunctionCallee SanCovTracePC, SanCovTracePCGuard; FunctionCallee SanCovTraceCmpFunction[4]; FunctionCallee SanCovTraceConstCmpFunction[4]; FunctionCallee SanCovTraceDivFunction[2]; FunctionCallee SanCovTraceGepFunction; FunctionCallee SanCovTraceSwitchFunction; GlobalVariable *SanCovLowestStack; Type *IntptrTy, *IntptrPtrTy, *Int64Ty, *Int64PtrTy, *Int32Ty, *Int32PtrTy, *Int16Ty, *Int8Ty, *Int8PtrTy, *Int1Ty, *Int1PtrTy; Module * CurModule; std::string CurModuleUniqueId; Triple TargetTriple; LLVMContext * C; const DataLayout *DL; GlobalVariable *FunctionGuardArray; // for trace-pc-guard. GlobalVariable *Function8bitCounterArray; // for inline-8bit-counters. GlobalVariable *FunctionBoolArray; // for inline-bool-flag. GlobalVariable *FunctionPCsArray; // for pc-table. SmallVector GlobalsToAppendToUsed; SmallVector GlobalsToAppendToCompilerUsed; SanitizerCoverageOptions Options; uint32_t instr = 0, selects = 0, unhandled = 0; GlobalVariable *AFLMapPtr = NULL; ConstantInt * One = NULL; ConstantInt * Zero = NULL; }; class ModuleSanitizerCoverageLegacyPass : public ModulePass { public: ModuleSanitizerCoverageLegacyPass( const SanitizerCoverageOptions &Options = SanitizerCoverageOptions()) : ModulePass(ID), Options(Options) { initializeModuleSanitizerCoverageLegacyPassPass( *PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { ModuleSanitizerCoverageAFL ModuleSancov(Options); auto DTCallback = [this](Function &F) -> const DominatorTree * { return &this->getAnalysis(F).getDomTree(); }; auto PDTCallback = [this](Function &F) -> const PostDominatorTree * { return &this->getAnalysis(F) .getPostDomTree(); }; return ModuleSancov.instrumentModule(M, DTCallback, PDTCallback); } /*static*/ char ID; // Pass identification, replacement for typeid StringRef getPassName() const override { return "ModuleSanitizerCoverage"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); } private: SanitizerCoverageOptions Options; }; } // namespace #if 1 extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK llvmGetPassPluginInfo() { return {LLVM_PLUGIN_API_VERSION, "SanitizerCoveragePCGUARD", "v0.1", /* lambda to insert our pass into the pass pipeline. */ [](PassBuilder &PB) { #if LLVM_VERSION_MAJOR <= 13 using OptimizationLevel = typename PassBuilder::OptimizationLevel; #endif PB.registerOptimizerLastEPCallback( [](ModulePassManager &MPM, OptimizationLevel OL) { MPM.addPass(ModuleSanitizerCoverageAFL()); }); }}; } #endif PreservedAnalyses ModuleSanitizerCoverageAFL::run(Module & M, ModuleAnalysisManager &MAM) { ModuleSanitizerCoverageAFL ModuleSancov(Options); auto &FAM = MAM.getResult(M).getManager(); auto DTCallback = [&FAM](Function &F) -> const DominatorTree * { return &FAM.getResult(F); }; auto PDTCallback = [&FAM](Function &F) -> const PostDominatorTree * { return &FAM.getResult(F); }; if (ModuleSancov.instrumentModule(M, DTCallback, PDTCallback)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } std::pair ModuleSanitizerCoverageAFL::CreateSecStartEnd( Module &M, const char *Section, Type *Ty) { GlobalVariable *SecStart = new GlobalVariable(M, #if LLVM_VERSION_MAJOR >= 15 Ty, #else Ty->getPointerElementType(), #endif false, GlobalVariable::ExternalWeakLinkage, nullptr, getSectionStart(Section)); SecStart->setVisibility(GlobalValue::HiddenVisibility); GlobalVariable *SecEnd = new GlobalVariable(M, #if LLVM_VERSION_MAJOR >= 15 Ty, #else Ty->getPointerElementType(), #endif false, GlobalVariable::ExternalWeakLinkage, nullptr, getSectionEnd(Section)); SecEnd->setVisibility(GlobalValue::HiddenVisibility); IRBuilder<> IRB(M.getContext()); if (!TargetTriple.isOSBinFormatCOFF()) return std::make_pair(SecStart, SecEnd); // Account for the fact that on windows-msvc __start_* symbols actually // point to a uint64_t before the start of the array. auto SecStartI8Ptr = IRB.CreatePointerCast(SecStart, Int8PtrTy); auto GEP = IRB.CreateGEP(Int8Ty, SecStartI8Ptr, ConstantInt::get(IntptrTy, sizeof(uint64_t))); return std::make_pair(IRB.CreatePointerCast(GEP, Ty), SecEnd); } Function *ModuleSanitizerCoverageAFL::CreateInitCallsForSections( Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, const char *Section) { auto SecStartEnd = CreateSecStartEnd(M, Section, Ty); auto SecStart = SecStartEnd.first; auto SecEnd = SecStartEnd.second; Function *CtorFunc; std::tie(CtorFunc, std::ignore) = createSanitizerCtorAndInitFunctions( M, CtorName, InitFunctionName, {Ty, Ty}, {SecStart, SecEnd}); assert(CtorFunc->getName() == CtorName); if (TargetTriple.supportsCOMDAT()) { // Use comdat to dedup CtorFunc. CtorFunc->setComdat(M.getOrInsertComdat(CtorName)); appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority, CtorFunc); } else { appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority); } if (TargetTriple.isOSBinFormatCOFF()) { // In COFF files, if the contructors are set as COMDAT (they are because // COFF supports COMDAT) and the linker flag /OPT:REF (strip unreferenced // functions and data) is used, the constructors get stripped. To prevent // this, give the constructors weak ODR linkage and ensure the linker knows // to include the sancov constructor. This way the linker can deduplicate // the constructors but always leave one copy. CtorFunc->setLinkage(GlobalValue::WeakODRLinkage); appendToUsed(M, CtorFunc); } return CtorFunc; } bool ModuleSanitizerCoverageAFL::instrumentModule( Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { setvbuf(stdout, NULL, _IONBF, 0); if (getenv("AFL_DEBUG")) debug = 1; if ((isatty(2) && !getenv("AFL_QUIET")) || debug) { SAYF(cCYA "SanitizerCoveragePCGUARD" VERSION cRST "\n"); } else be_quiet = 1; skip_nozero = getenv("AFL_LLVM_SKIP_NEVERZERO"); use_threadsafe_counters = getenv("AFL_LLVM_THREADSAFE_INST"); initInstrumentList(); scanForDangerousFunctions(&M); if (debug) { fprintf(stderr, "SANCOV: covtype:%u indirect:%d stack:%d noprune:%d " "createtable:%d tracepcguard:%d tracepc:%d\n", Options.CoverageType, Options.IndirectCalls == true ? 1 : 0, Options.StackDepth == true ? 1 : 0, Options.NoPrune == true ? 1 : 0, // Options.InlineBoolFlag == true ? 1 : 0, Options.PCTable == true ? 1 : 0, Options.TracePCGuard == true ? 1 : 0, Options.TracePC == true ? 1 : 0); } if (Options.CoverageType == SanitizerCoverageOptions::SCK_None) return false; C = &(M.getContext()); DL = &M.getDataLayout(); CurModule = &M; CurModuleUniqueId = getUniqueModuleId(CurModule); TargetTriple = Triple(M.getTargetTriple()); FunctionGuardArray = nullptr; Function8bitCounterArray = nullptr; FunctionBoolArray = nullptr; FunctionPCsArray = nullptr; IntptrTy = Type::getIntNTy(*C, DL->getPointerSizeInBits()); IntptrPtrTy = PointerType::getUnqual(IntptrTy); Type * VoidTy = Type::getVoidTy(*C); IRBuilder<> IRB(*C); Int64PtrTy = PointerType::getUnqual(IRB.getInt64Ty()); Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty()); Int8PtrTy = PointerType::getUnqual(IRB.getInt8Ty()); Int1PtrTy = PointerType::getUnqual(IRB.getInt1Ty()); Int64Ty = IRB.getInt64Ty(); Int32Ty = IRB.getInt32Ty(); Int16Ty = IRB.getInt16Ty(); Int8Ty = IRB.getInt8Ty(); Int1Ty = IRB.getInt1Ty(); LLVMContext &Ctx = M.getContext(); AFLMapPtr = new GlobalVariable(M, PointerType::get(Int8Ty, 0), false, GlobalValue::ExternalLinkage, 0, "__afl_area_ptr"); One = ConstantInt::get(IntegerType::getInt8Ty(Ctx), 1); Zero = ConstantInt::get(IntegerType::getInt8Ty(Ctx), 0); SanCovTracePCIndir = M.getOrInsertFunction(SanCovTracePCIndirName, VoidTy, IntptrTy); // Make sure smaller parameters are zero-extended to i64 if required by the // target ABI. AttributeList SanCovTraceCmpZeroExtAL; SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 0, Attribute::ZExt); SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 1, Attribute::ZExt); SanCovTraceCmpFunction[0] = M.getOrInsertFunction(SanCovTraceCmp1, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt8Ty(), IRB.getInt8Ty()); SanCovTraceCmpFunction[1] = M.getOrInsertFunction(SanCovTraceCmp2, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt16Ty(), IRB.getInt16Ty()); SanCovTraceCmpFunction[2] = M.getOrInsertFunction(SanCovTraceCmp4, SanCovTraceCmpZeroExtAL, VoidTy, IRB.getInt32Ty(), IRB.getInt32Ty()); SanCovTraceCmpFunction[3] = M.getOrInsertFunction(SanCovTraceCmp8, VoidTy, Int64Ty, Int64Ty); SanCovTraceConstCmpFunction[0] = M.getOrInsertFunction( SanCovTraceConstCmp1, SanCovTraceCmpZeroExtAL, VoidTy, Int8Ty, Int8Ty); SanCovTraceConstCmpFunction[1] = M.getOrInsertFunction( SanCovTraceConstCmp2, SanCovTraceCmpZeroExtAL, VoidTy, Int16Ty, Int16Ty); SanCovTraceConstCmpFunction[2] = M.getOrInsertFunction( SanCovTraceConstCmp4, SanCovTraceCmpZeroExtAL, VoidTy, Int32Ty, Int32Ty); SanCovTraceConstCmpFunction[3] = M.getOrInsertFunction(SanCovTraceConstCmp8, VoidTy, Int64Ty, Int64Ty); { AttributeList AL; AL = AL.addParamAttribute(*C, 0, Attribute::ZExt); SanCovTraceDivFunction[0] = M.getOrInsertFunction(SanCovTraceDiv4, AL, VoidTy, IRB.getInt32Ty()); } SanCovTraceDivFunction[1] = M.getOrInsertFunction(SanCovTraceDiv8, VoidTy, Int64Ty); SanCovTraceGepFunction = M.getOrInsertFunction(SanCovTraceGep, VoidTy, IntptrTy); SanCovTraceSwitchFunction = M.getOrInsertFunction(SanCovTraceSwitchName, VoidTy, Int64Ty, Int64PtrTy); Constant *SanCovLowestStackConstant = M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy); SanCovLowestStack = dyn_cast(SanCovLowestStackConstant); if (!SanCovLowestStack) { C->emitError(StringRef("'") + SanCovLowestStackName + "' should not be declared by the user"); return true; } SanCovLowestStack->setThreadLocalMode( GlobalValue::ThreadLocalMode::InitialExecTLSModel); if (Options.StackDepth && !SanCovLowestStack->isDeclaration()) SanCovLowestStack->setInitializer(Constant::getAllOnesValue(IntptrTy)); SanCovTracePC = M.getOrInsertFunction(SanCovTracePCName, VoidTy); SanCovTracePCGuard = M.getOrInsertFunction(SanCovTracePCGuardName, VoidTy, Int32PtrTy); for (auto &F : M) instrumentFunction(F, DTCallback, PDTCallback); Function *Ctor = nullptr; if (FunctionGuardArray) Ctor = CreateInitCallsForSections(M, SanCovModuleCtorTracePcGuardName, SanCovTracePCGuardInitName, Int32PtrTy, SanCovGuardsSectionName); if (Function8bitCounterArray) Ctor = CreateInitCallsForSections(M, SanCovModuleCtor8bitCountersName, SanCov8bitCountersInitName, Int8PtrTy, SanCovCountersSectionName); if (FunctionBoolArray) { Ctor = CreateInitCallsForSections(M, SanCovModuleCtorBoolFlagName, SanCovBoolFlagInitName, Int1PtrTy, SanCovBoolFlagSectionName); } if (Ctor && Options.PCTable) { auto SecStartEnd = CreateSecStartEnd(M, SanCovPCsSectionName, IntptrPtrTy); FunctionCallee InitFunction = declareSanitizerInitFunction( M, SanCovPCsInitName, {IntptrPtrTy, IntptrPtrTy}); IRBuilder<> IRBCtor(Ctor->getEntryBlock().getTerminator()); IRBCtor.CreateCall(InitFunction, {SecStartEnd.first, SecStartEnd.second}); } // We don't reference these arrays directly in any of our runtime functions, // so we need to prevent them from being dead stripped. if (TargetTriple.isOSBinFormatMachO()) appendToUsed(M, GlobalsToAppendToUsed); appendToCompilerUsed(M, GlobalsToAppendToCompilerUsed); if (!be_quiet) { if (!instr) WARNF("No instrumentation targets found."); else { char modeline[100]; snprintf(modeline, sizeof(modeline), "%s%s%s%s%s%s", getenv("AFL_HARDEN") ? "hardened" : "non-hardened", getenv("AFL_USE_ASAN") ? ", ASAN" : "", getenv("AFL_USE_MSAN") ? ", MSAN" : "", getenv("AFL_USE_TSAN") ? ", TSAN" : "", getenv("AFL_USE_CFISAN") ? ", CFISAN" : "", getenv("AFL_USE_UBSAN") ? ", UBSAN" : ""); OKF("Instrumented %u locations with no collisions (%s mode) of which are " "%u handled and %u unhandled selects.", instr, modeline, selects, unhandled); } } return true; } // True if block has successors and it dominates all of them. bool isFullDominator(const BasicBlock *BB, const DominatorTree *DT) { if (succ_begin(BB) == succ_end(BB)) return false; for (const BasicBlock *SUCC : make_range(succ_begin(BB), succ_end(BB))) { if (!DT->dominates(BB, SUCC)) return false; } return true; } // True if block has predecessors and it postdominates all of them. bool isFullPostDominator(const BasicBlock *BB, const PostDominatorTree *PDT) { if (pred_begin(BB) == pred_end(BB)) return false; for (const BasicBlock *PRED : make_range(pred_begin(BB), pred_end(BB))) { if (!PDT->dominates(BB, PRED)) return false; } return true; } bool shouldInstrumentBlock(const Function &F, const BasicBlock *BB, const DominatorTree * DT, const PostDominatorTree * PDT, const SanitizerCoverageOptions &Options) { // Don't insert coverage for blocks containing nothing but unreachable: we // will never call __sanitizer_cov() for them, so counting them in // NumberOfInstrumentedBlocks() might complicate calculation of code coverage // percentage. Also, unreachable instructions frequently have no debug // locations. if (isa(BB->getFirstNonPHIOrDbgOrLifetime())) return false; // Don't insert coverage into blocks without a valid insertion point // (catchswitch blocks). if (BB->getFirstInsertionPt() == BB->end()) return false; if (Options.NoPrune || &F.getEntryBlock() == BB) return true; if (Options.CoverageType == SanitizerCoverageOptions::SCK_Function && &F.getEntryBlock() != BB) return false; // Do not instrument full dominators, or full post-dominators with multiple // predecessors. return !isFullDominator(BB, DT) && !(isFullPostDominator(BB, PDT) && !BB->getSinglePredecessor()); } // Returns true iff From->To is a backedge. // A twist here is that we treat From->To as a backedge if // * To dominates From or // * To->UniqueSuccessor dominates From bool IsBackEdge(BasicBlock *From, BasicBlock *To, const DominatorTree *DT) { if (DT->dominates(To, From)) return true; if (auto Next = To->getUniqueSuccessor()) if (DT->dominates(Next, From)) return true; return false; } // Prunes uninteresting Cmp instrumentation: // * CMP instructions that feed into loop backedge branch. // // Note that Cmp pruning is controlled by the same flag as the // BB pruning. bool IsInterestingCmp(ICmpInst *CMP, const DominatorTree *DT, const SanitizerCoverageOptions &Options) { if (!Options.NoPrune) if (CMP->hasOneUse()) if (auto BR = dyn_cast(CMP->user_back())) for (BasicBlock *B : BR->successors()) if (IsBackEdge(BR->getParent(), B, DT)) return false; return true; } void ModuleSanitizerCoverageAFL::instrumentFunction( Function &F, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { if (F.empty()) return; if (!isInInstrumentList(&F, FMNAME)) return; if (F.getName().find(".module_ctor") != std::string::npos) return; // Should not instrument sanitizer init functions. if (F.getName().startswith("__sanitizer_")) return; // Don't instrument __sanitizer_* callbacks. // Don't touch available_externally functions, their actual body is elewhere. if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return; // Don't instrument MSVC CRT configuration helpers. They may run before normal // initialization. if (F.getName() == "__local_stdio_printf_options" || F.getName() == "__local_stdio_scanf_options") return; if (isa(F.getEntryBlock().getTerminator())) return; // Don't instrument functions using SEH for now. Splitting basic blocks like // we do for coverage breaks WinEHPrepare. // FIXME: Remove this when SEH no longer uses landingpad pattern matching. if (F.hasPersonalityFn() && isAsynchronousEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) return; if (Options.CoverageType >= SanitizerCoverageOptions::SCK_Edge) SplitAllCriticalEdges( F, CriticalEdgeSplittingOptions().setIgnoreUnreachableDests()); SmallVector IndirCalls; SmallVector BlocksToInstrument; SmallVector CmpTraceTargets; SmallVector SwitchTraceTargets; SmallVector DivTraceTargets; SmallVector GepTraceTargets; const DominatorTree * DT = DTCallback(F); const PostDominatorTree *PDT = PDTCallback(F); bool IsLeafFunc = true; for (auto &BB : F) { if (shouldInstrumentBlock(F, &BB, DT, PDT, Options)) BlocksToInstrument.push_back(&BB); for (auto &Inst : BB) { if (Options.IndirectCalls) { CallBase *CB = dyn_cast(&Inst); if (CB && !CB->getCalledFunction()) IndirCalls.push_back(&Inst); } if (Options.TraceCmp) { if (ICmpInst *CMP = dyn_cast(&Inst)) if (IsInterestingCmp(CMP, DT, Options)) CmpTraceTargets.push_back(&Inst); if (isa(&Inst)) SwitchTraceTargets.push_back(&Inst); } if (Options.TraceDiv) if (BinaryOperator *BO = dyn_cast(&Inst)) if (BO->getOpcode() == Instruction::SDiv || BO->getOpcode() == Instruction::UDiv) DivTraceTargets.push_back(BO); if (Options.TraceGep) if (GetElementPtrInst *GEP = dyn_cast(&Inst)) GepTraceTargets.push_back(GEP); if (Options.StackDepth) if (isa(Inst) || (isa(Inst) && !isa(Inst))) IsLeafFunc = false; } } InjectCoverage(F, BlocksToInstrument, IsLeafFunc); InjectCoverageForIndirectCalls(F, IndirCalls); InjectTraceForCmp(F, CmpTraceTargets); InjectTraceForSwitch(F, SwitchTraceTargets); InjectTraceForDiv(F, DivTraceTargets); InjectTraceForGep(F, GepTraceTargets); } GlobalVariable *ModuleSanitizerCoverageAFL::CreateFunctionLocalArrayInSection( size_t NumElements, Function &F, Type *Ty, const char *Section) { ArrayType *ArrayTy = ArrayType::get(Ty, NumElements); auto Array = new GlobalVariable( *CurModule, ArrayTy, false, GlobalVariable::PrivateLinkage, Constant::getNullValue(ArrayTy), "__sancov_gen_"); #if LLVM_VERSION_MAJOR >= 13 if (TargetTriple.supportsCOMDAT() && (TargetTriple.isOSBinFormatELF() || !F.isInterposable())) if (auto Comdat = getOrCreateFunctionComdat(F, TargetTriple)) Array->setComdat(Comdat); #else if (TargetTriple.supportsCOMDAT() && !F.isInterposable()) if (auto Comdat = GetOrCreateFunctionComdat(F, TargetTriple, CurModuleUniqueId)) Array->setComdat(Comdat); #endif Array->setSection(getSectionName(Section)); #if (LLVM_VERSION_MAJOR >= 11) || \ (LLVM_VERSION_MAJOR == 10 && LLVM_VERSION_MINOR >= 1) Array->setAlignment(Align(DL->getTypeStoreSize(Ty).getFixedSize())); #else Array->setAlignment(Align(4)); // cheating #endif GlobalsToAppendToUsed.push_back(Array); GlobalsToAppendToCompilerUsed.push_back(Array); MDNode *MD = MDNode::get(F.getContext(), ValueAsMetadata::get(&F)); Array->addMetadata(LLVMContext::MD_associated, *MD); return Array; } GlobalVariable *ModuleSanitizerCoverageAFL::CreatePCArray( Function &F, ArrayRef AllBlocks) { size_t N = AllBlocks.size(); assert(N); SmallVector PCs; IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt()); for (size_t i = 0; i < N; i++) { if (&F.getEntryBlock() == AllBlocks[i]) { PCs.push_back((Constant *)IRB.CreatePointerCast(&F, IntptrPtrTy)); PCs.push_back((Constant *)IRB.CreateIntToPtr( ConstantInt::get(IntptrTy, 1), IntptrPtrTy)); } else { PCs.push_back((Constant *)IRB.CreatePointerCast( BlockAddress::get(AllBlocks[i]), IntptrPtrTy)); PCs.push_back((Constant *)IRB.CreateIntToPtr( ConstantInt::get(IntptrTy, 0), IntptrPtrTy)); } } auto *PCArray = CreateFunctionLocalArrayInSection(N * 2, F, IntptrPtrTy, SanCovPCsSectionName); PCArray->setInitializer( ConstantArray::get(ArrayType::get(IntptrPtrTy, N * 2), PCs)); PCArray->setConstant(true); return PCArray; } void ModuleSanitizerCoverageAFL::CreateFunctionLocalArrays( Function &F, ArrayRef AllBlocks, uint32_t special) { if (Options.TracePCGuard) FunctionGuardArray = CreateFunctionLocalArrayInSection( AllBlocks.size() + special, F, Int32Ty, SanCovGuardsSectionName); if (Options.Inline8bitCounters) Function8bitCounterArray = CreateFunctionLocalArrayInSection( AllBlocks.size(), F, Int8Ty, SanCovCountersSectionName); /* if (Options.InlineBoolFlag) FunctionBoolArray = CreateFunctionLocalArrayInSection( AllBlocks.size(), F, Int1Ty, SanCovBoolFlagSectionName); */ if (Options.PCTable) FunctionPCsArray = CreatePCArray(F, AllBlocks); } bool ModuleSanitizerCoverageAFL::InjectCoverage( Function &F, ArrayRef AllBlocks, bool IsLeafFunc) { uint32_t cnt_cov = 0, cnt_sel = 0, cnt_sel_inc = 0; for (auto &BB : F) { for (auto &IN : BB) { CallInst *callInst = nullptr; if ((callInst = dyn_cast(&IN))) { Function *Callee = callInst->getCalledFunction(); if (!Callee) continue; if (callInst->getCallingConv() != llvm::CallingConv::C) continue; StringRef FuncName = Callee->getName(); if (!FuncName.compare(StringRef("dlopen")) || !FuncName.compare(StringRef("_dlopen"))) { fprintf(stderr, "WARNING: dlopen() detected. To have coverage for a library " "that your target dlopen()'s this must either happen before " "__AFL_INIT() or you must use AFL_PRELOAD to preload all " "dlopen()'ed libraries!\n"); continue; } if (FuncName.compare(StringRef("__afl_coverage_interesting"))) continue; cnt_cov++; } SelectInst *selectInst = nullptr; if ((selectInst = dyn_cast(&IN))) { Value *c = selectInst->getCondition(); auto t = c->getType(); if (t->getTypeID() == llvm::Type::IntegerTyID) { cnt_sel++; cnt_sel_inc += 2; } #if (LLVM_VERSION_MAJOR >= 12) else if (t->getTypeID() == llvm::Type::FixedVectorTyID) { FixedVectorType *tt = dyn_cast(t); if (tt) { cnt_sel++; cnt_sel_inc += tt->getElementCount().getKnownMinValue(); } } #endif } } } /* Create PCGUARD array */ CreateFunctionLocalArrays(F, AllBlocks, cnt_cov + cnt_sel_inc); selects += cnt_sel; uint32_t special = 0, local_selects = 0, skip_next = 0; for (auto &BB : F) { for (auto &IN : BB) { CallInst *callInst = nullptr; /* std::string errMsg; raw_string_ostream os(errMsg); IN.print(os); fprintf(stderr, "X: %s\n", os.str().c_str()); */ if ((callInst = dyn_cast(&IN))) { Function *Callee = callInst->getCalledFunction(); if (!Callee) continue; if (callInst->getCallingConv() != llvm::CallingConv::C) continue; StringRef FuncName = Callee->getName(); if (FuncName.compare(StringRef("__afl_coverage_interesting"))) continue; IRBuilder<> IRB(callInst); if (!FunctionGuardArray) { fprintf(stderr, "SANCOV: FunctionGuardArray is NULL, failed to emit " "instrumentation."); continue; } Value *GuardPtr = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get(IntptrTy, (++special + AllBlocks.size()) * 4)), Int32PtrTy); LoadInst *Idx = IRB.CreateLoad(IRB.getInt32Ty(), GuardPtr); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(Idx); callInst->setOperand(1, Idx); } SelectInst *selectInst = nullptr; if (!skip_next && (selectInst = dyn_cast(&IN))) { uint32_t vector_cnt = 0; Value * condition = selectInst->getCondition(); Value * result; auto t = condition->getType(); IRBuilder<> IRB(selectInst->getNextNode()); if (t->getTypeID() == llvm::Type::IntegerTyID) { if (!FunctionGuardArray) { fprintf(stderr, "SANCOV: FunctionGuardArray is NULL, failed to emit " "instrumentation."); continue; } auto GuardPtr1 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get( IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); auto GuardPtr2 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get( IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); result = IRB.CreateSelect(condition, GuardPtr1, GuardPtr2); } else #if LLVM_VERSION_MAJOR >= 14 if (t->getTypeID() == llvm::Type::FixedVectorTyID) { FixedVectorType *tt = dyn_cast(t); if (tt) { uint32_t elements = tt->getElementCount().getFixedValue(); vector_cnt = elements; if (elements) { FixedVectorType *GuardPtr1 = FixedVectorType::get(Int32PtrTy, elements); FixedVectorType *GuardPtr2 = FixedVectorType::get(Int32PtrTy, elements); Value *x, *y; if (!FunctionGuardArray) { fprintf(stderr, "SANCOV: FunctionGuardArray is NULL, failed to emit " "instrumentation."); continue; } Value *val1 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get( IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); x = IRB.CreateInsertElement(GuardPtr1, val1, (uint64_t)0); Value *val2 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get( IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); y = IRB.CreateInsertElement(GuardPtr2, val2, (uint64_t)0); for (uint64_t i = 1; i < elements; i++) { val1 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get(IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); x = IRB.CreateInsertElement(x, val1, i); val2 = IRB.CreateIntToPtr( IRB.CreateAdd( IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get(IntptrTy, (cnt_cov + ++local_selects + AllBlocks.size()) * 4)), Int32PtrTy); y = IRB.CreateInsertElement(y, val2, i); } /* std::string errMsg; raw_string_ostream os(errMsg); x->print(os); fprintf(stderr, "X: %s\n", os.str().c_str()); */ result = IRB.CreateSelect(condition, x, y); } } } else #endif { unhandled++; continue; } uint32_t vector_cur = 0; /* Load SHM pointer */ LoadInst *MapPtr = IRB.CreateLoad(PointerType::get(Int8Ty, 0), AFLMapPtr); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(MapPtr); /* std::string errMsg; raw_string_ostream os(errMsg); result->print(os); fprintf(stderr, "X: %s\n", os.str().c_str()); */ while (1) { /* Get CurLoc */ LoadInst *CurLoc = nullptr; Value * MapPtrIdx = nullptr; /* Load counter for CurLoc */ if (!vector_cnt) { CurLoc = IRB.CreateLoad(IRB.getInt32Ty(), result); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(CurLoc); MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, CurLoc); } else { auto element = IRB.CreateExtractElement(result, vector_cur++); auto elementptr = IRB.CreateIntToPtr(element, Int32PtrTy); auto elementld = IRB.CreateLoad(IRB.getInt32Ty(), elementptr); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(elementld); MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, elementld); } if (use_threadsafe_counters) { IRB.CreateAtomicRMW(llvm::AtomicRMWInst::BinOp::Add, MapPtrIdx, One, #if LLVM_VERSION_MAJOR >= 13 llvm::MaybeAlign(1), #endif llvm::AtomicOrdering::Monotonic); } else { LoadInst *Counter = IRB.CreateLoad(IRB.getInt8Ty(), MapPtrIdx); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(Counter); /* Update bitmap */ Value *Incr = IRB.CreateAdd(Counter, One); if (skip_nozero == NULL) { auto cf = IRB.CreateICmpEQ(Incr, Zero); auto carry = IRB.CreateZExt(cf, Int8Ty); Incr = IRB.CreateAdd(Incr, carry); } StoreInst *StoreCtx = IRB.CreateStore(Incr, MapPtrIdx); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(StoreCtx); } if (!vector_cnt) { vector_cnt = 2; break; } else if (vector_cnt == vector_cur) { break; } } skip_next = 1; instr += vector_cnt; } else { skip_next = 0; } } } if (AllBlocks.empty() && !special && !local_selects) return false; if (!AllBlocks.empty()) for (size_t i = 0, N = AllBlocks.size(); i < N; i++) InjectCoverageAtBlock(F, *AllBlocks[i], i, IsLeafFunc); return true; } // On every indirect call we call a run-time function // __sanitizer_cov_indir_call* with two parameters: // - callee address, // - global cache array that contains CacheSize pointers (zero-initialized). // The cache is used to speed up recording the caller-callee pairs. // The address of the caller is passed implicitly via caller PC. // CacheSize is encoded in the name of the run-time function. void ModuleSanitizerCoverageAFL::InjectCoverageForIndirectCalls( Function &F, ArrayRef IndirCalls) { if (IndirCalls.empty()) return; for (auto I : IndirCalls) { IRBuilder<> IRB(I); CallBase & CB = cast(*I); Value * Callee = CB.getCalledOperand(); if (isa(Callee)) continue; IRB.CreateCall(SanCovTracePCIndir, IRB.CreatePointerCast(Callee, IntptrTy)); } } // For every switch statement we insert a call: // __sanitizer_cov_trace_switch(CondValue, // {NumCases, ValueSizeInBits, Case0Value, Case1Value, Case2Value, ... }) void ModuleSanitizerCoverageAFL::InjectTraceForSwitch( Function &, ArrayRef SwitchTraceTargets) { for (auto I : SwitchTraceTargets) { if (SwitchInst *SI = dyn_cast(I)) { IRBuilder<> IRB(I); SmallVector Initializers; Value * Cond = SI->getCondition(); if (Cond->getType()->getScalarSizeInBits() > Int64Ty->getScalarSizeInBits()) continue; Initializers.push_back(ConstantInt::get(Int64Ty, SI->getNumCases())); Initializers.push_back( ConstantInt::get(Int64Ty, Cond->getType()->getScalarSizeInBits())); if (Cond->getType()->getScalarSizeInBits() < Int64Ty->getScalarSizeInBits()) Cond = IRB.CreateIntCast(Cond, Int64Ty, false); for (auto It : SI->cases()) { Constant *C = It.getCaseValue(); if (C->getType()->getScalarSizeInBits() < Int64Ty->getScalarSizeInBits()) C = ConstantExpr::getCast(CastInst::ZExt, It.getCaseValue(), Int64Ty); Initializers.push_back(C); } llvm::sort(drop_begin(Initializers, 2), [](const Constant *A, const Constant *B) { return cast(A)->getLimitedValue() < cast(B)->getLimitedValue(); }); ArrayType *ArrayOfInt64Ty = ArrayType::get(Int64Ty, Initializers.size()); GlobalVariable *GV = new GlobalVariable( *CurModule, ArrayOfInt64Ty, false, GlobalVariable::InternalLinkage, ConstantArray::get(ArrayOfInt64Ty, Initializers), "__sancov_gen_cov_switch_values"); IRB.CreateCall(SanCovTraceSwitchFunction, {Cond, IRB.CreatePointerCast(GV, Int64PtrTy)}); } } } void ModuleSanitizerCoverageAFL::InjectTraceForDiv( Function &, ArrayRef DivTraceTargets) { for (auto BO : DivTraceTargets) { IRBuilder<> IRB(BO); Value * A1 = BO->getOperand(1); if (isa(A1)) continue; if (!A1->getType()->isIntegerTy()) continue; uint64_t TypeSize = DL->getTypeStoreSizeInBits(A1->getType()); int CallbackIdx = TypeSize == 32 ? 0 : TypeSize == 64 ? 1 : -1; if (CallbackIdx < 0) continue; auto Ty = Type::getIntNTy(*C, TypeSize); IRB.CreateCall(SanCovTraceDivFunction[CallbackIdx], {IRB.CreateIntCast(A1, Ty, true)}); } } void ModuleSanitizerCoverageAFL::InjectTraceForGep( Function &, ArrayRef GepTraceTargets) { for (auto GEP : GepTraceTargets) { IRBuilder<> IRB(GEP); for (Use &Idx : GEP->indices()) if (!isa(Idx) && Idx->getType()->isIntegerTy()) IRB.CreateCall(SanCovTraceGepFunction, {IRB.CreateIntCast(Idx, IntptrTy, true)}); } } void ModuleSanitizerCoverageAFL::InjectTraceForCmp( Function &, ArrayRef CmpTraceTargets) { for (auto I : CmpTraceTargets) { if (ICmpInst *ICMP = dyn_cast(I)) { IRBuilder<> IRB(ICMP); Value * A0 = ICMP->getOperand(0); Value * A1 = ICMP->getOperand(1); if (!A0->getType()->isIntegerTy()) continue; uint64_t TypeSize = DL->getTypeStoreSizeInBits(A0->getType()); int CallbackIdx = TypeSize == 8 ? 0 : TypeSize == 16 ? 1 : TypeSize == 32 ? 2 : TypeSize == 64 ? 3 : -1; if (CallbackIdx < 0) continue; // __sanitizer_cov_trace_cmp((type_size << 32) | predicate, A0, A1); auto CallbackFunc = SanCovTraceCmpFunction[CallbackIdx]; bool FirstIsConst = isa(A0); bool SecondIsConst = isa(A1); // If both are const, then we don't need such a comparison. if (FirstIsConst && SecondIsConst) continue; // If only one is const, then make it the first callback argument. if (FirstIsConst || SecondIsConst) { CallbackFunc = SanCovTraceConstCmpFunction[CallbackIdx]; if (SecondIsConst) std::swap(A0, A1); } auto Ty = Type::getIntNTy(*C, TypeSize); IRB.CreateCall(CallbackFunc, {IRB.CreateIntCast(A0, Ty, true), IRB.CreateIntCast(A1, Ty, true)}); } } } void ModuleSanitizerCoverageAFL::InjectCoverageAtBlock(Function & F, BasicBlock &BB, size_t Idx, bool IsLeafFunc) { BasicBlock::iterator IP = BB.getFirstInsertionPt(); bool IsEntryBB = &BB == &F.getEntryBlock(); if (IsEntryBB) { // Keep allocas and llvm.localescape calls in the entry block. Even // if we aren't splitting the block, it's nice for allocas to be before // calls. IP = PrepareToSplitEntryBlock(BB, IP); } IRBuilder<> IRB(&*IP); if (Options.TracePC) { IRB.CreateCall(SanCovTracePC); // ->setCannotMerge(); // gets the PC using GET_CALLER_PC. } if (Options.TracePCGuard) { /* Get CurLoc */ Value *GuardPtr = IRB.CreateIntToPtr( IRB.CreateAdd(IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), ConstantInt::get(IntptrTy, Idx * 4)), Int32PtrTy); LoadInst *CurLoc = IRB.CreateLoad(IRB.getInt32Ty(), GuardPtr); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(CurLoc); /* Load SHM pointer */ LoadInst *MapPtr = IRB.CreateLoad(PointerType::get(Int8Ty, 0), AFLMapPtr); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(MapPtr); /* Load counter for CurLoc */ Value *MapPtrIdx = IRB.CreateGEP(Int8Ty, MapPtr, CurLoc); if (use_threadsafe_counters) { IRB.CreateAtomicRMW(llvm::AtomicRMWInst::BinOp::Add, MapPtrIdx, One, #if LLVM_VERSION_MAJOR >= 13 llvm::MaybeAlign(1), #endif llvm::AtomicOrdering::Monotonic); } else { LoadInst *Counter = IRB.CreateLoad(IRB.getInt8Ty(), MapPtrIdx); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(Counter); /* Update bitmap */ Value *Incr = IRB.CreateAdd(Counter, One); if (skip_nozero == NULL) { auto cf = IRB.CreateICmpEQ(Incr, Zero); auto carry = IRB.CreateZExt(cf, Int8Ty); Incr = IRB.CreateAdd(Incr, carry); } StoreInst *StoreCtx = IRB.CreateStore(Incr, MapPtrIdx); ModuleSanitizerCoverageAFL::SetNoSanitizeMetadata(StoreCtx); } // done :) // IRB.CreateCall(SanCovTracePCGuard, Offset)->setCannotMerge(); // IRB.CreateCall(SanCovTracePCGuard, GuardPtr)->setCannotMerge(); ++instr; } if (Options.Inline8bitCounters) { auto CounterPtr = IRB.CreateGEP( Function8bitCounterArray->getValueType(), Function8bitCounterArray, {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); auto Load = IRB.CreateLoad(Int8Ty, CounterPtr); auto Inc = IRB.CreateAdd(Load, ConstantInt::get(Int8Ty, 1)); auto Store = IRB.CreateStore(Inc, CounterPtr); SetNoSanitizeMetadata(Load); SetNoSanitizeMetadata(Store); } /* if (Options.InlineBoolFlag) { auto FlagPtr = IRB.CreateGEP( FunctionBoolArray->getValueType(), FunctionBoolArray, {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); auto Load = IRB.CreateLoad(Int1Ty, FlagPtr); auto ThenTerm = SplitBlockAndInsertIfThen(IRB.CreateIsNull(Load), &*IP, false); IRBuilder<> ThenIRB(ThenTerm); auto Store = ThenIRB.CreateStore(ConstantInt::getTrue(Int1Ty), FlagPtr); SetNoSanitizeMetadata(Load); SetNoSanitizeMetadata(Store); } */ if (Options.StackDepth && IsEntryBB && !IsLeafFunc) { // Check stack depth. If it's the deepest so far, record it. Module * M = F.getParent(); Function *GetFrameAddr = Intrinsic::getDeclaration( M, Intrinsic::frameaddress, IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); auto FrameAddrPtr = IRB.CreateCall(GetFrameAddr, {Constant::getNullValue(Int32Ty)}); auto FrameAddrInt = IRB.CreatePtrToInt(FrameAddrPtr, IntptrTy); auto LowestStack = IRB.CreateLoad(IntptrTy, SanCovLowestStack); auto IsStackLower = IRB.CreateICmpULT(FrameAddrInt, LowestStack); auto ThenTerm = SplitBlockAndInsertIfThen(IsStackLower, &*IP, false); IRBuilder<> ThenIRB(ThenTerm); auto Store = ThenIRB.CreateStore(FrameAddrInt, SanCovLowestStack); SetNoSanitizeMetadata(LowestStack); SetNoSanitizeMetadata(Store); } } std::string ModuleSanitizerCoverageAFL::getSectionName( const std::string &Section) const { if (TargetTriple.isOSBinFormatCOFF()) { if (Section == SanCovCountersSectionName) return ".SCOV$CM"; if (Section == SanCovBoolFlagSectionName) return ".SCOV$BM"; if (Section == SanCovPCsSectionName) return ".SCOVP$M"; return ".SCOV$GM"; // For SanCovGuardsSectionName. } if (TargetTriple.isOSBinFormatMachO()) return "__DATA,__" + Section; return "__" + Section; } std::string ModuleSanitizerCoverageAFL::getSectionStart( const std::string &Section) const { if (TargetTriple.isOSBinFormatMachO()) return "\1section$start$__DATA$__" + Section; return "__start___" + Section; } std::string ModuleSanitizerCoverageAFL::getSectionEnd( const std::string &Section) const { if (TargetTriple.isOSBinFormatMachO()) return "\1section$end$__DATA$__" + Section; return "__stop___" + Section; } #if 0 char ModuleSanitizerCoverageLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(ModuleSanitizerCoverageLegacyPass, "sancov", "Pass for instrumenting coverage on functions", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_END(ModuleSanitizerCoverageLegacyPass, "sancov", "Pass for instrumenting coverage on functions", false, false) ModulePass *llvm::createModuleSanitizerCoverageLegacyPassPass( const SanitizerCoverageOptions &Options, const std::vector &AllowlistFiles, const std::vector &BlocklistFiles) { return new ModuleSanitizerCoverageLegacyPass(Options, AllowlistFiles, BlocklistFiles); } #endif