// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 8 == 0 $assert BATCH_TILE >= 8 $SIMD_TILE = BATCH_TILE // 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include void xnn_f16_raddstoreexpminusmax_ukernel__avx2_rr1_p2_x${BATCH_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t batch, const void* input, const void* max, void* output, void* sum, const union xnn_f16_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch % sizeof(uint16_t) == 0); const __m256 vi_max = _mm256_cvtph_ps(_mm_set1_epi16((short) *((const uint16_t*) max))); const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2); const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2); const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1); const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff); const uint16_t* i = (const uint16_t*) input; uint16_t* o = (uint16_t*) output; $for K in range(ACCUMULATORS): __m256 vacc${K} = _mm256_setzero_ps(); for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) { const __m256 vi0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); $for N in range(1, SIMD_TILE): const __m256 vi${ABC[N]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); i += ${BATCH_TILE}; $for N in range(SIMD_TILE): const __m256 vx${ABC[N]} = _mm256_sub_ps(vi${ABC[N]}, vi_max); $for N in range(SIMD_TILE): __m256 vn${ABC[N]} = _mm256_fmadd_ps(vx${ABC[N]}, vlog2e, vmagic_bias); $for N in range(SIMD_TILE): const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23)); $for N in range(SIMD_TILE): vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias); $for N in range(SIMD_TILE): __m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vx${ABC[N]}); $for N in range(SIMD_TILE): const __m256 vp${ABC[N]} = _mm256_fmadd_ps(vc2, vt${ABC[N]}, vc1); $for N in range(SIMD_TILE): vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]}); $for N in range(SIMD_TILE): __m256 vf${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]}); $for N in range(SIMD_TILE): vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vx${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]}); _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf0, _MM_FROUND_NO_EXC)); $for N in range(1, SIMD_TILE): _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vf${ABC[N]}, _MM_FROUND_NO_EXC)); o += ${BATCH_TILE}; $for N in range(SIMD_TILE): vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${ABC[N]}); } $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE}); $ACC_SLICE *= 2 __m256 vacc = vacc0; for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); i += 8; const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC)); o += 8; vacc = _mm256_add_ps(vacc, vf); } __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1)); if (batch != 0) { assert(batch >= 1 * sizeof(uint16_t)); assert(batch <= 7 * sizeof(uint16_t)); const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); const __m256 vx = _mm256_sub_ps(vi, vi_max); __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx); const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); __m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_NO_EXC); __m128 vf_lo = _mm256_castps256_ps128(vf); if (batch & (4 * sizeof(uint16_t))) { _mm_storel_epi64((__m128i*) o, vh); vh = _mm_unpackhi_epi64(vh, vh); vacc_lo = _mm_add_ps(vacc_lo, vf_lo); vf_lo = _mm256_extractf128_ps(vf, 1); o += 4; } if (batch & (2 * sizeof(uint16_t))) { _mm_storeu_si32(o, vh); vh = _mm_srli_epi64(vh, 32); vacc_lo = _mm_blend_ps(_mm_add_ps(vacc_lo, vf_lo), vacc_lo, 0xC); vf_lo = _mm_movehl_ps(vf_lo, vf_lo); o += 2; } if (batch & (1 * sizeof(uint16_t))) { *o = (uint16_t) _mm_extract_epi16(vh, 0); vacc_lo = _mm_add_ss(vacc_lo, vf_lo); } } vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo)); vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo)); *((uint16_t*) sum) = (uint16_t) _mm_extract_epi16(_mm_cvtps_ph(vacc_lo, _MM_FROUND_NO_EXC), 0); _mm256_zeroupper(); }