// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert NR % 4 == 0 $assert EXTOPT in ["SHLAND", "ZIP", "MOVL"] $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_bf16_gemm_minmax_ukernel_${MR}x${NR}c8__neonfma_${EXTOPT.lower()}( size_t mr, size_t nc, size_t kc, const void* restrict a, size_t a_stride, const void* restrict w_ptr, void* restrict c, size_t cm_stride, size_t cn_stride, const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(uint16_t) == 0); assert(a != NULL); assert(w_ptr != NULL); assert(c != NULL); const uint16_t* a0 = (const uint16_t*) a; uint16_t* c0 = (uint16_t*) c; $for M in range(1, MR): const uint16_t* a${M} = (const uint16_t*) ((uintptr_t) a${M-1} + a_stride); uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { a${M} = a${M-1}; c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } const uint16_t* w = (const uint16_t*) w_ptr; $if EXTOPT == "SHLAND": const uint16x8_t vmask = vreinterpretq_u16_u32(vmovq_n_u32(UINT32_C(0xFFFF0000))); $elif EXTOPT == "ZIP": const uint16x8_t vzero = vmovq_n_u16(0); do { $for N in range(NR): float32x4_t vacc0x${ABC[N]} = vreinterpretq_f32_u32(vshll_n_u16(vld1_lane_u16(w, vdup_n_u16(0), 0), 16)); w += 1; $for M in range(1, MR): $for N in range(NR): float32x4_t vacc${M}x${ABC[N]} = vacc0x${ABC[N]}; size_t k = kc; for (; k >= 8 * sizeof(uint16_t); k -= 8 * sizeof(uint16_t)) { $for M in range(MR): const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} += 8; $for N in range(NR): const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8; $for M in range(MR): $if EXTOPT == "SHLAND": const float32x4_t va${M}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}), 16)); $elif EXTOPT == "ZIP": const float32x4_t va${M}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, va${M})); $for N in range(NR): $if EXTOPT == "SHLAND": const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16)); $elif EXTOPT == "ZIP": const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, vb${ABC[N]})); $for N in range(NR): $for M in range(MR): vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}e, vb${ABC[N]}e); $for M in range(MR): $if EXTOPT == "SHLAND": const float32x4_t va${M}o = vreinterpretq_f32_u16(vandq_u16(va${M}, vmask)); $elif EXTOPT == "ZIP": const float32x4_t va${M}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, va${M})); $for N in range(NR): $if EXTOPT == "SHLAND": const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask)); $elif EXTOPT == "ZIP": const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, vb${ABC[N]})); $for N in range(NR): $for M in range(MR): vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}o, vb${ABC[N]}o); } if XNN_UNLIKELY(k != 0) { $for M in range(MR): const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} = (const uint16_t*) ((uintptr_t) a${M} + k); $for N in range(NR): const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8; $for N in range(NR): const uint16x8_t vm${ABC[N]} = vceqq_u16(vb${ABC[N]}, vmovq_n_u16(0)); $for N in range(NR): $if EXTOPT == "SHLAND": const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16)); $elif EXTOPT == "ZIP": const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, vb${ABC[N]})); $for N in range(NR): $for M in range(MR): const uint16x8_t va${M}x${ABC[N]} = vbicq_u16(va${M}, vm${ABC[N]}); $for N in range(NR): $for M in range(MR): $if EXTOPT == "SHLAND": const float32x4_t va${M}x${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}x${ABC[N]}), 16)); $elif EXTOPT == "ZIP": const float32x4_t va${M}x${ABC[N]}e = vreinterpretq_f32_u16(vzip1q_u16(vzero, va${M}x${ABC[N]})); $for N in range(NR): $for M in range(MR): vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}e, vb${ABC[N]}e); $for N in range(NR): $if EXTOPT == "SHLAND": const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask)); $elif EXTOPT == "ZIP": const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, vb${ABC[N]})); $for N in range(NR): $for M in range(MR): $if EXTOPT == "SHLAND": const float32x4_t va${M}x${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(va${M}x${ABC[N]}, vmask)); $elif EXTOPT == "ZIP": const float32x4_t va${M}x${ABC[N]}o = vreinterpretq_f32_u16(vzip2q_u16(vzero, va${M}x${ABC[N]})); $for N in range(NR): $for M in range(MR): vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}o, vb${ABC[N]}o); } #if XNN_ARCH_ARM64 $for N in range(0, NR, 2): $for M in range(MR): const float32x4_t vacc${M}x${ABC[N:N+2]} = vpaddq_f32(vacc${M}x${ABC[N]}, vacc${M}x${ABC[N+1]}); $for N in range(0, NR, 4): $for M in range(MR): float32x4_t vacc${M}x${ABC[N:N+4]} = vpaddq_f32(vacc${M}x${ABC[N:N+2]}, vacc${M}x${ABC[N+2:N+4]}); #else $for N in range(NR): $for M in range(MR): const float32x2_t vsum${M}x${ABC[N]} = vadd_f32(vget_low_f32(vacc${M}x${ABC[N]}), vget_high_f32(vacc${M}x${ABC[N]})); $for N in range(0, NR, 4): $for M in range(MR): float32x4_t vacc${M}x${ABC[N:N+4]} = vcombine_f32(vpadd_f32(vsum${M}x${ABC[N]}, vsum${M}x${ABC[N+1]}), vpadd_f32(vsum${M}x${ABC[N+2]}, vsum${M}x${ABC[N+3]})); #endif const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = vminq_f32(vacc${M}x${ABC[N:N+4]}, vmax); const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = vmaxq_f32(vacc${M}x${ABC[N:N+4]}, vmin); $for N in range(0, NR, 4): $for M in range(MR): uint16x4_t vout${M}x${ABC[N:N+4]} = vshrn_n_u32(vreinterpretq_u32_f32(vacc${M}x${ABC[N:N+4]}), 16); if XNN_LIKELY(nc >= ${NR}) { $for M in range(MR): vst1_u16(c${M}, vout${M}x${ABC[0:4]}); $for N in range(4, NR, 4): vst1_u16(c${M} + ${N}, vout${M}x${ABC[N:N+4]}); c${M} = (uint16_t*) ((uintptr_t) c${M} + cn_stride); $for M in range(MR): a${M} = (const uint16_t*) ((uintptr_t) a${M} - kc); nc -= ${NR}; } else { $for LOG2N in reversed(range(NR.bit_length())): $if NR != 1 << LOG2N: if (nc & ${1 << LOG2N}) { $if LOG2N >= 2: $for N in range(0, 1 << LOG2N, 4): $for M in range(MR): vst1_u16(c${M}, vout${M}x${ABC[N:N+4]}); c${M} += 4; $for M in range(MR): $for N in range(0, 1 << (LOG2N - 1), 4): vout${M}x${ABC[N:N+4]} = vout${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]}; $elif LOG2N == 1: $for M in range(MR): vst1_lane_u32((void*) c${M}, vreinterpret_u32_u16(vout${M}x${ABC[0:4]}), 0); c${M} += 2; $for M in range(MR): vout${M}x${ABC[0:4]} = vext_u16(vout${M}x${ABC[0:4]}, vout${M}x${ABC[0:4]}, 2); $elif LOG2N == 0: $for M in range(MR): vst1_lane_u16(c${M}, vout${M}x${ABC[0:4]}, 0); } nc = 0; } } while (nc != 0); }