/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VelocityTracker" #include #include #include #include #include #include #include #include #include #include using std::literals::chrono_literals::operator""ms; namespace android { /** * Log debug messages about velocity tracking. * Enable this via "adb shell setprop log.tag.VelocityTrackerVelocity DEBUG" (requires restart) */ const bool DEBUG_VELOCITY = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Velocity", ANDROID_LOG_INFO); /** * Log debug messages about the progress of the algorithm itself. * Enable this via "adb shell setprop log.tag.VelocityTrackerStrategy DEBUG" (requires restart) */ const bool DEBUG_STRATEGY = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Strategy", ANDROID_LOG_INFO); /** * Log debug messages about the 'impulse' strategy. * Enable this via "adb shell setprop log.tag.VelocityTrackerImpulse DEBUG" (requires restart) */ const bool DEBUG_IMPULSE = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Impulse", ANDROID_LOG_INFO); // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // All axes supported for velocity tracking, mapped to their default strategies. // Although other strategies are available for testing and comparison purposes, // the default strategy is the one that applications will actually use. Be very careful // when adjusting the default strategy because it can dramatically affect // (often in a bad way) the user experience. static const std::map DEFAULT_STRATEGY_BY_AXIS = {{AMOTION_EVENT_AXIS_X, VelocityTracker::Strategy::LSQ2}, {AMOTION_EVENT_AXIS_Y, VelocityTracker::Strategy::LSQ2}, {AMOTION_EVENT_AXIS_SCROLL, VelocityTracker::Strategy::IMPULSE}}; // Axes specifying location on a 2D plane (i.e. X and Y). static const std::set PLANAR_AXES = {AMOTION_EVENT_AXIS_X, AMOTION_EVENT_AXIS_Y}; // Axes whose motion values are differential values (i.e. deltas). static const std::set DIFFERENTIAL_AXES = {AMOTION_EVENT_AXIS_SCROLL}; // Threshold for determining that a pointer has stopped moving. // Some input devices do not send ACTION_MOVE events in the case where a pointer has // stopped. We need to detect this case so that we can accurately predict the // velocity after the pointer starts moving again. static const std::chrono::duration ASSUME_POINTER_STOPPED_TIME = 40ms; static std::string toString(std::chrono::nanoseconds t) { std::stringstream stream; stream.precision(1); stream << std::fixed << std::chrono::duration(t).count() << " ms"; return stream.str(); } static float vectorDot(const float* a, const float* b, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { r += *(a++) * *(b++); } return r; } static float vectorNorm(const float* a, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { float t = *(a++); r += t * t; } return sqrtf(r); } static std::string vectorToString(const float* a, uint32_t m) { std::string str; str += "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += android::base::StringPrintf(" %f", *(a++)); } str += " ]"; return str; } static std::string vectorToString(const std::vector& v) { return vectorToString(v.data(), v.size()); } static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { std::string str; str = "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += " ["; for (size_t j = 0; j < n; j++) { if (j) { str += ","; } str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]); } str += " ]"; } str += " ]"; return str; } // --- VelocityTracker --- VelocityTracker::VelocityTracker(const Strategy strategy) : mLastEventTime(0), mCurrentPointerIdBits(0), mOverrideStrategy(strategy) {} VelocityTracker::~VelocityTracker() { } bool VelocityTracker::isAxisSupported(int32_t axis) { return DEFAULT_STRATEGY_BY_AXIS.find(axis) != DEFAULT_STRATEGY_BY_AXIS.end(); } void VelocityTracker::configureStrategy(int32_t axis) { const bool isDifferentialAxis = DIFFERENTIAL_AXES.find(axis) != DIFFERENTIAL_AXES.end(); std::unique_ptr createdStrategy; if (mOverrideStrategy != VelocityTracker::Strategy::DEFAULT) { createdStrategy = createStrategy(mOverrideStrategy, /*deltaValues=*/isDifferentialAxis); } else { createdStrategy = createStrategy(DEFAULT_STRATEGY_BY_AXIS.at(axis), /*deltaValues=*/isDifferentialAxis); } LOG_ALWAYS_FATAL_IF(createdStrategy == nullptr, "Could not create velocity tracker strategy for axis '%" PRId32 "'!", axis); mConfiguredStrategies[axis] = std::move(createdStrategy); } std::unique_ptr VelocityTracker::createStrategy( VelocityTracker::Strategy strategy, bool deltaValues) { switch (strategy) { case VelocityTracker::Strategy::IMPULSE: ALOGI_IF(DEBUG_STRATEGY, "Initializing impulse strategy"); return std::make_unique(deltaValues); case VelocityTracker::Strategy::LSQ1: return std::make_unique(1); case VelocityTracker::Strategy::LSQ2: ALOGI_IF(DEBUG_STRATEGY && !DEBUG_IMPULSE, "Initializing lsq2 strategy"); return std::make_unique(2); case VelocityTracker::Strategy::LSQ3: return std::make_unique(3); case VelocityTracker::Strategy::WLSQ2_DELTA: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::DELTA); case VelocityTracker::Strategy::WLSQ2_CENTRAL: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::CENTRAL); case VelocityTracker::Strategy::WLSQ2_RECENT: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::RECENT); case VelocityTracker::Strategy::INT1: return std::make_unique(1); case VelocityTracker::Strategy::INT2: return std::make_unique(2); case VelocityTracker::Strategy::LEGACY: return std::make_unique(); default: break; } return nullptr; } void VelocityTracker::clear() { mCurrentPointerIdBits.clear(); mActivePointerId = std::nullopt; mConfiguredStrategies.clear(); } void VelocityTracker::clearPointer(int32_t pointerId) { mCurrentPointerIdBits.clearBit(pointerId); if (mActivePointerId && *mActivePointerId == pointerId) { // The active pointer id is being removed. Mark it invalid and try to find a new one // from the remaining pointers. mActivePointerId = std::nullopt; if (!mCurrentPointerIdBits.isEmpty()) { mActivePointerId = mCurrentPointerIdBits.firstMarkedBit(); } } for (const auto& [_, strategy] : mConfiguredStrategies) { strategy->clearPointer(pointerId); } } void VelocityTracker::addMovement(nsecs_t eventTime, int32_t pointerId, int32_t axis, float position) { if (mCurrentPointerIdBits.hasBit(pointerId) && std::chrono::nanoseconds(eventTime - mLastEventTime) > ASSUME_POINTER_STOPPED_TIME) { ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state.", toString(std::chrono::nanoseconds(eventTime - mLastEventTime)).c_str()); // We have not received any movements for too long. Assume that all pointers // have stopped. mConfiguredStrategies.clear(); } mLastEventTime = eventTime; mCurrentPointerIdBits.markBit(pointerId); if (!mActivePointerId) { // Let this be the new active pointer if no active pointer is currently set mActivePointerId = pointerId; } if (mConfiguredStrategies.find(axis) == mConfiguredStrategies.end()) { configureStrategy(axis); } mConfiguredStrategies[axis]->addMovement(eventTime, pointerId, position); if (DEBUG_VELOCITY) { ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", pointerId=%" PRId32 ", activePointerId=%s", eventTime, pointerId, toString(mActivePointerId).c_str()); std::optional estimator = getEstimator(axis, pointerId); ALOGD(" %d: axis=%d, position=%0.3f, " "estimator (degree=%d, coeff=%s, confidence=%f)", pointerId, axis, position, int((*estimator).degree), vectorToString((*estimator).coeff.data(), (*estimator).degree + 1).c_str(), (*estimator).confidence); } } void VelocityTracker::addMovement(const MotionEvent* event) { // Stores data about which axes to process based on the incoming motion event. std::set axesToProcess; int32_t actionMasked = event->getActionMasked(); switch (actionMasked) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_HOVER_ENTER: // Clear all pointers on down before adding the new movement. clear(); axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; case AMOTION_EVENT_ACTION_POINTER_DOWN: { // Start a new movement trace for a pointer that just went down. // We do this on down instead of on up because the client may want to query the // final velocity for a pointer that just went up. clearPointer(event->getPointerId(event->getActionIndex())); axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; } case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_HOVER_MOVE: axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; case AMOTION_EVENT_ACTION_POINTER_UP: case AMOTION_EVENT_ACTION_UP: { std::chrono::nanoseconds delaySinceLastEvent(event->getEventTime() - mLastEventTime); if (delaySinceLastEvent > ASSUME_POINTER_STOPPED_TIME) { ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state upon pointer liftoff.", toString(delaySinceLastEvent).c_str()); // We have not received any movements for too long. Assume that all pointers // have stopped. for (int32_t axis : PLANAR_AXES) { mConfiguredStrategies.erase(axis); } } // These actions because they do not convey any new information about // pointer movement. We also want to preserve the last known velocity of the pointers. // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position // of the pointers that went up. ACTION_POINTER_UP does include the new position of // pointers that remained down but we will also receive an ACTION_MOVE with this // information if any of them actually moved. Since we don't know how many pointers // will be going up at once it makes sense to just wait for the following ACTION_MOVE // before adding the movement. return; } case AMOTION_EVENT_ACTION_SCROLL: axesToProcess.insert(AMOTION_EVENT_AXIS_SCROLL); break; default: // Ignore all other actions. return; } const size_t historySize = event->getHistorySize(); for (size_t h = 0; h <= historySize; h++) { const nsecs_t eventTime = event->getHistoricalEventTime(h); for (size_t i = 0; i < event->getPointerCount(); i++) { if (event->isResampled(i, h)) { continue; // skip resampled samples } const int32_t pointerId = event->getPointerId(i); for (int32_t axis : axesToProcess) { const float position = event->getHistoricalAxisValue(axis, i, h); addMovement(eventTime, pointerId, axis, position); } } } } std::optional VelocityTracker::getVelocity(int32_t axis, int32_t pointerId) const { std::optional estimator = getEstimator(axis, pointerId); if (estimator && (*estimator).degree >= 1) { return (*estimator).coeff[1]; } return {}; } VelocityTracker::ComputedVelocity VelocityTracker::getComputedVelocity(int32_t units, float maxVelocity) { ComputedVelocity computedVelocity; for (const auto& [axis, _] : mConfiguredStrategies) { BitSet32 copyIdBits = BitSet32(mCurrentPointerIdBits); while (!copyIdBits.isEmpty()) { uint32_t id = copyIdBits.clearFirstMarkedBit(); std::optional velocity = getVelocity(axis, id); if (velocity) { float adjustedVelocity = std::clamp(*velocity * units / 1000, -maxVelocity, maxVelocity); computedVelocity.addVelocity(axis, id, adjustedVelocity); } } } return computedVelocity; } std::optional VelocityTracker::getEstimator(int32_t axis, int32_t pointerId) const { const auto& it = mConfiguredStrategies.find(axis); if (it == mConfiguredStrategies.end()) { return std::nullopt; } return it->second->getEstimator(pointerId); } // --- LeastSquaresVelocityTrackerStrategy --- LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree, Weighting weighting) : mDegree(degree), mWeighting(weighting) {} LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { } void LeastSquaresVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mIndex.erase(pointerId); mMovements.erase(pointerId); } void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { // If data for this pointer already exists, we have a valid entry at the position of // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index // to the next position in the circular buffer and write the new Movement there. Otherwise, // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements // for this pointer and write to the first position. auto [movementIt, inserted] = mMovements.insert({pointerId, {}}); auto [indexIt, _] = mIndex.insert({pointerId, 0}); size_t& index = indexIt->second; if (!inserted && movementIt->second[index].eventTime != eventTime) { // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include // the new pointer. If the eventtimes for both events are identical, just update the data // for this time. // We only compare against the last value, as it is likely that addMovement is called // in chronological order as events occur. index++; } if (index == HISTORY_SIZE) { index = 0; } Movement& movement = movementIt->second[index]; movement.eventTime = eventTime; movement.position = position; } /** * Solves a linear least squares problem to obtain a N degree polynomial that fits * the specified input data as nearly as possible. * * Returns true if a solution is found, false otherwise. * * The input consists of two vectors of data points X and Y with indices 0..m-1 * along with a weight vector W of the same size. * * The output is a vector B with indices 0..n that describes a polynomial * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. * * Accordingly, the weight vector W should be initialized by the caller with the * reciprocal square root of the variance of the error in each input data point. * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). * The weights express the relative importance of each data point. If the weights are * all 1, then the data points are considered to be of equal importance when fitting * the polynomial. It is a good idea to choose weights that diminish the importance * of data points that may have higher than usual error margins. * * Errors among data points are assumed to be independent. W is represented here * as a vector although in the literature it is typically taken to be a diagonal matrix. * * That is to say, the function that generated the input data can be approximated * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. * * The coefficient of determination (R^2) is also returned to describe the goodness * of fit of the model for the given data. It is a value between 0 and 1, where 1 * indicates perfect correspondence. * * This function first expands the X vector to a m by n matrix A such that * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then * multiplies it by w[i]./ * * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q * and an m by n upper triangular matrix R. Because R is upper triangular (lower * part is all zeroes), we can simplify the decomposition into an m by n matrix * Q1 and a n by n matrix R1 such that A = Q1 R1. * * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) * to find B. * * For efficiency, we lay out A and Q column-wise in memory because we frequently * operate on the column vectors. Conversely, we lay out R row-wise. * * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares * http://en.wikipedia.org/wiki/Gram-Schmidt */ static bool solveLeastSquares(const std::vector& x, const std::vector& y, const std::vector& w, uint32_t n, std::array& outB, float* outDet) { const size_t m = x.size(); ALOGD_IF(DEBUG_STRATEGY, "solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), vectorToString(x).c_str(), vectorToString(y).c_str(), vectorToString(w).c_str()); LOG_ALWAYS_FATAL_IF(m != y.size() || m != w.size(), "Mismatched vector sizes"); // Expand the X vector to a matrix A, pre-multiplied by the weights. float a[n][m]; // column-major order for (uint32_t h = 0; h < m; h++) { a[0][h] = w[h]; for (uint32_t i = 1; i < n; i++) { a[i][h] = a[i - 1][h] * x[h]; } } ALOGD_IF(DEBUG_STRATEGY, " - a=%s", matrixToString(&a[0][0], m, n, /*rowMajor=*/false).c_str()); // Apply the Gram-Schmidt process to A to obtain its QR decomposition. float q[n][m]; // orthonormal basis, column-major order float r[n][n]; // upper triangular matrix, row-major order for (uint32_t j = 0; j < n; j++) { for (uint32_t h = 0; h < m; h++) { q[j][h] = a[j][h]; } for (uint32_t i = 0; i < j; i++) { float dot = vectorDot(&q[j][0], &q[i][0], m); for (uint32_t h = 0; h < m; h++) { q[j][h] -= dot * q[i][h]; } } float norm = vectorNorm(&q[j][0], m); if (norm < 0.000001f) { // vectors are linearly dependent or zero so no solution ALOGD_IF(DEBUG_STRATEGY, " - no solution, norm=%f", norm); return false; } float invNorm = 1.0f / norm; for (uint32_t h = 0; h < m; h++) { q[j][h] *= invNorm; } for (uint32_t i = 0; i < n; i++) { r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); } } if (DEBUG_STRATEGY) { ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, /*rowMajor=*/false).c_str()); ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, /*rowMajor=*/true).c_str()); // calculate QR, if we factored A correctly then QR should equal A float qr[n][m]; for (uint32_t h = 0; h < m; h++) { for (uint32_t i = 0; i < n; i++) { qr[i][h] = 0; for (uint32_t j = 0; j < n; j++) { qr[i][h] += q[j][h] * r[j][i]; } } } ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, /*rowMajor=*/false).c_str()); } // Solve R B = Qt W Y to find B. This is easy because R is upper triangular. // We just work from bottom-right to top-left calculating B's coefficients. float wy[m]; for (uint32_t h = 0; h < m; h++) { wy[h] = y[h] * w[h]; } for (uint32_t i = n; i != 0; ) { i--; outB[i] = vectorDot(&q[i][0], wy, m); for (uint32_t j = n - 1; j > i; j--) { outB[i] -= r[i][j] * outB[j]; } outB[i] /= r[i][i]; } ALOGD_IF(DEBUG_STRATEGY, " - b=%s", vectorToString(outB.data(), n).c_str()); // Calculate the coefficient of determination as 1 - (SSerr / SStot) where // SSerr is the residual sum of squares (variance of the error), // and SStot is the total sum of squares (variance of the data) where each // has been weighted. float ymean = 0; for (uint32_t h = 0; h < m; h++) { ymean += y[h]; } ymean /= m; float sserr = 0; float sstot = 0; for (uint32_t h = 0; h < m; h++) { float err = y[h] - outB[0]; float term = 1; for (uint32_t i = 1; i < n; i++) { term *= x[h]; err -= term * outB[i]; } sserr += w[h] * w[h] * err * err; float var = y[h] - ymean; sstot += w[h] * w[h] * var * var; } *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; ALOGD_IF(DEBUG_STRATEGY, " - sserr=%f", sserr); ALOGD_IF(DEBUG_STRATEGY, " - sstot=%f", sstot); ALOGD_IF(DEBUG_STRATEGY, " - det=%f", *outDet); return true; } /* * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to * the default implementation */ static std::optional> solveUnweightedLeastSquaresDeg2( const std::vector& x, const std::vector& y) { const size_t count = x.size(); LOG_ALWAYS_FATAL_IF(count != y.size(), "Mismatching array sizes"); // Solving y = a*x^2 + b*x + c float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0; for (size_t i = 0; i < count; i++) { float xi = x[i]; float yi = y[i]; float xi2 = xi*xi; float xi3 = xi2*xi; float xi4 = xi3*xi; float xiyi = xi*yi; float xi2yi = xi2*yi; sxi += xi; sxi2 += xi2; sxiyi += xiyi; sxi2yi += xi2yi; syi += yi; sxi3 += xi3; sxi4 += xi4; } float Sxx = sxi2 - sxi*sxi / count; float Sxy = sxiyi - sxi*syi / count; float Sxx2 = sxi3 - sxi*sxi2 / count; float Sx2y = sxi2yi - sxi2*syi / count; float Sx2x2 = sxi4 - sxi2*sxi2 / count; float denominator = Sxx*Sx2x2 - Sxx2*Sxx2; if (denominator == 0) { ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2); return std::nullopt; } // Compute a float numerator = Sx2y*Sxx - Sxy*Sxx2; float a = numerator / denominator; // Compute b numerator = Sxy*Sx2x2 - Sx2y*Sxx2; float b = numerator / denominator; // Compute c float c = syi/count - b * sxi/count - a * sxi2/count; return std::make_optional(std::array({c, b, a})); } std::optional LeastSquaresVelocityTrackerStrategy::getEstimator( int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } // Iterate over movement samples in reverse time order and collect samples. std::vector positions; std::vector w; std::vector time; uint32_t index = mIndex.at(pointerId); const Movement& newestMovement = movementIt->second[index]; do { const Movement& movement = movementIt->second[index]; nsecs_t age = newestMovement.eventTime - movement.eventTime; if (age > HORIZON) { break; } if (movement.eventTime == 0 && index != 0) { // All eventTime's are initialized to 0. In this fixed-width circular buffer, it's // possible that not all entries are valid. We use a time=0 as a signal for those // uninitialized values. If we encounter a time of 0 in a position // that's > 0, it means that we hit the block where the data wasn't initialized. // We still don't know whether the value at index=0, with eventTime=0 is valid. // However, that's only possible when the value is by itself. So there's no hard in // processing it anyways, since the velocity for a single point is zero, and this // situation will only be encountered in artificial circumstances (in tests). // In practice, time will never be 0. break; } positions.push_back(movement.position); w.push_back(chooseWeight(pointerId, index)); time.push_back(-age * 0.000000001f); index = (index == 0 ? HISTORY_SIZE : index) - 1; } while (positions.size() < HISTORY_SIZE); const size_t m = positions.size(); if (m == 0) { return std::nullopt; // no data } // Calculate a least squares polynomial fit. uint32_t degree = mDegree; if (degree > m - 1) { degree = m - 1; } if (degree == 2 && mWeighting == Weighting::NONE) { // Optimize unweighted, quadratic polynomial fit std::optional> coeff = solveUnweightedLeastSquaresDeg2(time, positions); if (coeff) { VelocityTracker::Estimator estimator; estimator.time = newestMovement.eventTime; estimator.degree = 2; estimator.confidence = 1; for (size_t i = 0; i <= estimator.degree; i++) { estimator.coeff[i] = (*coeff)[i]; } return estimator; } } else if (degree >= 1) { // General case for an Nth degree polynomial fit float det; uint32_t n = degree + 1; VelocityTracker::Estimator estimator; if (solveLeastSquares(time, positions, w, n, estimator.coeff, &det)) { estimator.time = newestMovement.eventTime; estimator.degree = degree; estimator.confidence = det; ALOGD_IF(DEBUG_STRATEGY, "estimate: degree=%d, coeff=%s, confidence=%f", int(estimator.degree), vectorToString(estimator.coeff.data(), n).c_str(), estimator.confidence); return estimator; } } // No velocity data available for this pointer, but we do have its current position. VelocityTracker::Estimator estimator; estimator.coeff[0] = positions[0]; estimator.time = newestMovement.eventTime; estimator.degree = 0; estimator.confidence = 1; return estimator; } float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint32_t index) const { const std::array& movements = mMovements.at(pointerId); switch (mWeighting) { case Weighting::DELTA: { // Weight points based on how much time elapsed between them and the next // point so that points that "cover" a shorter time span are weighed less. // delta 0ms: 0.5 // delta 10ms: 1.0 if (index == mIndex.at(pointerId)) { return 1.0f; } uint32_t nextIndex = (index + 1) % HISTORY_SIZE; float deltaMillis = (movements[nextIndex].eventTime - movements[index].eventTime) * 0.000001f; if (deltaMillis < 0) { return 0.5f; } if (deltaMillis < 10) { return 0.5f + deltaMillis * 0.05; } return 1.0f; } case Weighting::CENTRAL: { // Weight points based on their age, weighing very recent and very old points less. // age 0ms: 0.5 // age 10ms: 1.0 // age 50ms: 1.0 // age 60ms: 0.5 float ageMillis = (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) * 0.000001f; if (ageMillis < 0) { return 0.5f; } if (ageMillis < 10) { return 0.5f + ageMillis * 0.05; } if (ageMillis < 50) { return 1.0f; } if (ageMillis < 60) { return 0.5f + (60 - ageMillis) * 0.05; } return 0.5f; } case Weighting::RECENT: { // Weight points based on their age, weighing older points less. // age 0ms: 1.0 // age 50ms: 1.0 // age 100ms: 0.5 float ageMillis = (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) * 0.000001f; if (ageMillis < 50) { return 1.0f; } if (ageMillis < 100) { return 0.5f + (100 - ageMillis) * 0.01f; } return 0.5f; } case Weighting::NONE: return 1.0f; } } // --- IntegratingVelocityTrackerStrategy --- IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : mDegree(degree) { } IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { } void IntegratingVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mPointerIdBits.clearBit(pointerId); } void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { State& state = mPointerState[pointerId]; if (mPointerIdBits.hasBit(pointerId)) { updateState(state, eventTime, position); } else { initState(state, eventTime, position); } mPointerIdBits.markBit(pointerId); } std::optional IntegratingVelocityTrackerStrategy::getEstimator( int32_t pointerId) const { if (mPointerIdBits.hasBit(pointerId)) { const State& state = mPointerState[pointerId]; VelocityTracker::Estimator estimator; populateEstimator(state, &estimator); return estimator; } return std::nullopt; } void IntegratingVelocityTrackerStrategy::initState(State& state, nsecs_t eventTime, float pos) const { state.updateTime = eventTime; state.degree = 0; state.pos = pos; state.accel = 0; state.vel = 0; } void IntegratingVelocityTrackerStrategy::updateState(State& state, nsecs_t eventTime, float pos) const { const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds if (eventTime <= state.updateTime + MIN_TIME_DELTA) { return; } float dt = (eventTime - state.updateTime) * 0.000000001f; state.updateTime = eventTime; float vel = (pos - state.pos) / dt; if (state.degree == 0) { state.vel = vel; state.degree = 1; } else { float alpha = dt / (FILTER_TIME_CONSTANT + dt); if (mDegree == 1) { state.vel += (vel - state.vel) * alpha; } else { float accel = (vel - state.vel) / dt; if (state.degree == 1) { state.accel = accel; state.degree = 2; } else { state.accel += (accel - state.accel) * alpha; } state.vel += (state.accel * dt) * alpha; } } state.pos = pos; } void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state, VelocityTracker::Estimator* outEstimator) const { outEstimator->time = state.updateTime; outEstimator->confidence = 1.0f; outEstimator->degree = state.degree; outEstimator->coeff[0] = state.pos; outEstimator->coeff[1] = state.vel; outEstimator->coeff[2] = state.accel / 2; } // --- LegacyVelocityTrackerStrategy --- LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {} LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { } void LegacyVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mIndex.erase(pointerId); mMovements.erase(pointerId); } void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { // If data for this pointer already exists, we have a valid entry at the position of // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index // to the next position in the circular buffer and write the new Movement there. Otherwise, // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements // for this pointer and write to the first position. auto [movementIt, inserted] = mMovements.insert({pointerId, {}}); auto [indexIt, _] = mIndex.insert({pointerId, 0}); size_t& index = indexIt->second; if (!inserted && movementIt->second[index].eventTime != eventTime) { // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include // the new pointer. If the eventtimes for both events are identical, just update the data // for this time. // We only compare against the last value, as it is likely that addMovement is called // in chronological order as events occur. index++; } if (index == HISTORY_SIZE) { index = 0; } Movement& movement = movementIt->second[index]; movement.eventTime = eventTime; movement.position = position; } std::optional LegacyVelocityTrackerStrategy::getEstimator( int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } const Movement& newestMovement = movementIt->second[mIndex.at(pointerId)]; // Find the oldest sample that contains the pointer and that is not older than HORIZON. nsecs_t minTime = newestMovement.eventTime - HORIZON; uint32_t oldestIndex = mIndex.at(pointerId); uint32_t numTouches = 1; do { uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1; const Movement& nextOldestMovement = mMovements.at(pointerId)[nextOldestIndex]; if (nextOldestMovement.eventTime < minTime) { break; } oldestIndex = nextOldestIndex; } while (++numTouches < HISTORY_SIZE); // Calculate an exponentially weighted moving average of the velocity estimate // at different points in time measured relative to the oldest sample. // This is essentially an IIR filter. Newer samples are weighted more heavily // than older samples. Samples at equal time points are weighted more or less // equally. // // One tricky problem is that the sample data may be poorly conditioned. // Sometimes samples arrive very close together in time which can cause us to // overestimate the velocity at that time point. Most samples might be measured // 16ms apart but some consecutive samples could be only 0.5sm apart because // the hardware or driver reports them irregularly or in bursts. float accumV = 0; uint32_t index = oldestIndex; uint32_t samplesUsed = 0; const Movement& oldestMovement = mMovements.at(pointerId)[oldestIndex]; float oldestPosition = oldestMovement.position; nsecs_t lastDuration = 0; while (numTouches-- > 1) { if (++index == HISTORY_SIZE) { index = 0; } const Movement& movement = mMovements.at(pointerId)[index]; nsecs_t duration = movement.eventTime - oldestMovement.eventTime; // If the duration between samples is small, we may significantly overestimate // the velocity. Consequently, we impose a minimum duration constraint on the // samples that we include in the calculation. if (duration >= MIN_DURATION) { float position = movement.position; float scale = 1000000000.0f / duration; // one over time delta in seconds float v = (position - oldestPosition) * scale; accumV = (accumV * lastDuration + v * duration) / (duration + lastDuration); lastDuration = duration; samplesUsed += 1; } } // Report velocity. float newestPosition = newestMovement.position; VelocityTracker::Estimator estimator; estimator.time = newestMovement.eventTime; estimator.confidence = 1; estimator.coeff[0] = newestPosition; if (samplesUsed) { estimator.coeff[1] = accumV; estimator.degree = 1; } else { estimator.degree = 0; } return estimator; } // --- ImpulseVelocityTrackerStrategy --- ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy(bool deltaValues) : mDeltaValues(deltaValues) {} ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() { } void ImpulseVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mIndex.erase(pointerId); mMovements.erase(pointerId); } void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { // If data for this pointer already exists, we have a valid entry at the position of // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index // to the next position in the circular buffer and write the new Movement there. Otherwise, // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements // for this pointer and write to the first position. auto [movementIt, inserted] = mMovements.insert({pointerId, {}}); auto [indexIt, _] = mIndex.insert({pointerId, 0}); size_t& index = indexIt->second; if (!inserted && movementIt->second[index].eventTime != eventTime) { // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include // the new pointer. If the eventtimes for both events are identical, just update the data // for this time. // We only compare against the last value, as it is likely that addMovement is called // in chronological order as events occur. index++; } if (index == HISTORY_SIZE) { index = 0; } Movement& movement = movementIt->second[index]; movement.eventTime = eventTime; movement.position = position; } /** * Calculate the total impulse provided to the screen and the resulting velocity. * * The touchscreen is modeled as a physical object. * Initial condition is discussed below, but for now suppose that v(t=0) = 0 * * The kinetic energy of the object at the release is E=0.5*m*v^2 * Then vfinal = sqrt(2E/m). The goal is to calculate E. * * The kinetic energy at the release is equal to the total work done on the object by the finger. * The total work W is the sum of all dW along the path. * * dW = F*dx, where dx is the piece of path traveled. * Force is change of momentum over time, F = dp/dt = m dv/dt. * Then substituting: * dW = m (dv/dt) * dx = m * v * dv * * Summing along the path, we get: * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv) * Since the mass stays constant, the equation for final velocity is: * vfinal = sqrt(2*sum(v * dv)) * * Here, * dv : change of velocity = (v[i+1]-v[i]) * dx : change of distance = (x[i+1]-x[i]) * dt : change of time = (t[i+1]-t[i]) * v : instantaneous velocity = dx/dt * * The final formula is: * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i * The absolute value is needed to properly account for the sign. If the velocity over a * particular segment descreases, then this indicates braking, which means that negative * work was done. So for two positive, but decreasing, velocities, this contribution would be * negative and will cause a smaller final velocity. * * Initial condition * There are two ways to deal with initial condition: * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest. * This is not entirely accurate. We are only taking the past X ms of touch data, where X is * currently equal to 100. However, a touch event that created a fling probably lasted for longer * than that, which would mean that the user has already been interacting with the touchscreen * and it has probably already been moving. * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this * initial velocity and the equivalent energy, and start with this initial energy. * Consider an example where we have the following data, consisting of 3 points: * time: t0, t1, t2 * x : x0, x1, x2 * v : 0 , v1, v2 * Here is what will happen in each of these scenarios: * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1))) * since velocity is a real number * 2) If we treat the screen as already moving, then it must already have an energy (per mass) * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment * will contribute to the total kinetic energy (since we can effectively consider that v0=v1). * This will give the following expression for the final velocity: * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1))) * This analysis can be generalized to an arbitrary number of samples. * * * Comparing the two equations above, we see that the only mathematical difference * is the factor of 1/2 in front of the first velocity term. * This boundary condition would allow for the "proper" calculation of the case when all of the * samples are equally spaced in time and distance, which should suggest a constant velocity. * * Note that approach 2) is sensitive to the proper ordering of the data in time, since * the boundary condition must be applied to the oldest sample to be accurate. */ static float kineticEnergyToVelocity(float work) { static constexpr float sqrt2 = 1.41421356237; return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2; } static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count, bool deltaValues) { // The input should be in reversed time order (most recent sample at index i=0) // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function static constexpr float SECONDS_PER_NANO = 1E-9; if (count < 2) { return 0; // if 0 or 1 points, velocity is zero } if (t[1] > t[0]) { // Algorithm will still work, but not perfectly ALOGE("Samples provided to calculateImpulseVelocity in the wrong order"); } // If the data values are delta values, we do not have to calculate deltas here. // We can use the delta values directly, along with the calculated time deltas. // Since the data value input is in reversed time order: // [a] for non-delta inputs, instantenous velocity = (x[i] - x[i-1])/(t[i] - t[i-1]) // [b] for delta inputs, instantenous velocity = -x[i-1]/(t[i] - t[i - 1]) // e.g., let the non-delta values are: V = [2, 3, 7], the equivalent deltas are D = [2, 1, 4]. // Since the input is in reversed time order, the input values for this function would be // V'=[7, 3, 2] and D'=[4, 1, 2] for the non-delta and delta values, respectively. // // The equivalent of {(V'[2] - V'[1]) = 2 - 3 = -1} would be {-D'[1] = -1} // Similarly, the equivalent of {(V'[1] - V'[0]) = 3 - 7 = -4} would be {-D'[0] = -4} if (count == 2) { // if 2 points, basic linear calculation if (t[1] == t[0]) { ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]); return 0; } const float deltaX = deltaValues ? -x[0] : x[1] - x[0]; return deltaX / (SECONDS_PER_NANO * (t[1] - t[0])); } // Guaranteed to have at least 3 points here float work = 0; for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time if (t[i] == t[i-1]) { ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]); continue; } float vprev = kineticEnergyToVelocity(work); // v[i-1] const float deltaX = deltaValues ? -x[i-1] : x[i] - x[i-1]; float vcurr = deltaX / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i] work += (vcurr - vprev) * fabsf(vcurr); if (i == count - 1) { work *= 0.5; // initial condition, case 2) above } } return kineticEnergyToVelocity(work); } std::optional ImpulseVelocityTrackerStrategy::getEstimator( int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } // Iterate over movement samples in reverse time order and collect samples. float positions[HISTORY_SIZE]; nsecs_t time[HISTORY_SIZE]; size_t m = 0; // number of points that will be used for fitting size_t index = mIndex.at(pointerId); const Movement& newestMovement = movementIt->second[index]; do { const Movement& movement = movementIt->second[index]; nsecs_t age = newestMovement.eventTime - movement.eventTime; if (age > HORIZON) { break; } if (movement.eventTime == 0 && index != 0) { // All eventTime's are initialized to 0. If we encounter a time of 0 in a position // that's >0, it means that we hit the block where the data wasn't initialized. // It's also possible that the sample at 0 would be invalid, but there's no harm in // processing it, since it would be just a single point, and will only be encountered // in artificial circumstances (in tests). break; } positions[m] = movement.position; time[m] = movement.eventTime; index = (index == 0 ? HISTORY_SIZE : index) - 1; } while (++m < HISTORY_SIZE); if (m == 0) { return std::nullopt; // no data } VelocityTracker::Estimator estimator; estimator.coeff[0] = 0; estimator.coeff[1] = calculateImpulseVelocity(time, positions, m, mDeltaValues); estimator.coeff[2] = 0; estimator.time = newestMovement.eventTime; estimator.degree = 2; // similar results to 2nd degree fit estimator.confidence = 1; ALOGD_IF(DEBUG_STRATEGY, "velocity: %.1f", estimator.coeff[1]); if (DEBUG_IMPULSE) { // TODO(b/134179997): delete this block once the switch to 'impulse' is complete. // Calculate the lsq2 velocity for the same inputs to allow runtime comparisons. // X axis chosen arbitrarily for velocity comparisons. VelocityTracker lsq2(VelocityTracker::Strategy::LSQ2); for (ssize_t i = m - 1; i >= 0; i--) { lsq2.addMovement(time[i], pointerId, AMOTION_EVENT_AXIS_X, positions[i]); } std::optional v = lsq2.getVelocity(AMOTION_EVENT_AXIS_X, pointerId); if (v) { ALOGD("lsq2 velocity: %.1f", *v); } else { ALOGD("lsq2 velocity: could not compute velocity"); } } return estimator; } } // namespace android