/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace android { namespace bpf { static constexpr uint64_t NSEC_PER_SEC = 1000000000; static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; using std::vector; class TimeInStateTest : public testing::Test { protected: TimeInStateTest() {}; void SetUp() { if (!isTrackingUidTimesSupported() || !android::base::GetBoolProperty("sys.init.perf_lsm_hooks", false)) { GTEST_SKIP(); } } }; TEST_F(TimeInStateTest, TotalTimeInState) { auto times = getTotalCpuFreqTimes(); ASSERT_TRUE(times.has_value()); EXPECT_FALSE(times->empty()); } TEST_F(TimeInStateTest, SingleUidTimeInState) { auto times = getUidCpuFreqTimes(0); ASSERT_TRUE(times.has_value()); EXPECT_FALSE(times->empty()); } TEST_F(TimeInStateTest, SingleUidConcurrentTimes) { auto concurrentTimes = getUidConcurrentTimes(0); ASSERT_TRUE(concurrentTimes.has_value()); ASSERT_FALSE(concurrentTimes->active.empty()); ASSERT_FALSE(concurrentTimes->policy.empty()); uint64_t policyEntries = 0; for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size(); ASSERT_EQ(concurrentTimes->active.size(), policyEntries); } static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) { size_t maxPolicyCpus = 0; for (const auto &vec : concurrentTime.policy) { maxPolicyCpus = std::max(maxPolicyCpus, vec.size()); } uint64_t policySum = 0; for (size_t i = 0; i < maxPolicyCpus; ++i) { for (const auto &vec : concurrentTime.policy) { if (i < vec.size()) policySum += vec[i]; } ASSERT_LE(concurrentTime.active[i], policySum); policySum -= concurrentTime.active[i]; } policySum = 0; for (size_t i = 0; i < concurrentTime.active.size(); ++i) { for (const auto &vec : concurrentTime.policy) { if (i < vec.size()) policySum += vec[vec.size() - 1 - i]; } auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i]; // This check is slightly flaky because we may read a map entry in the middle of an update // when active times have been updated but policy times have not. This happens infrequently // and can be distinguished from more serious bugs by re-running the test: if the underlying // data itself is inconsistent, the test will fail every time. ASSERT_LE(activeSum, policySum); policySum -= activeSum; } } static void TestUidTimesConsistent(const std::vector> &timeInState, const struct concurrent_time_t &concurrentTime) { ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime)); ASSERT_EQ(timeInState.size(), concurrentTime.policy.size()); uint64_t policySum = 0; for (uint32_t i = 0; i < timeInState.size(); ++i) { uint64_t tisSum = std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0); uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(), concurrentTime.policy[i].end(), (uint64_t)0); if (tisSum < concurrentSum) ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC); else ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC); policySum += concurrentSum; } uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(), (uint64_t)0); EXPECT_EQ(activeSum, policySum); } TEST_F(TimeInStateTest, SingleUidTimesConsistent) { auto times = getUidCpuFreqTimes(0); ASSERT_TRUE(times.has_value()); auto concurrentTimes = getUidConcurrentTimes(0); ASSERT_TRUE(concurrentTimes.has_value()); ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes)); } TEST_F(TimeInStateTest, AllUidTimeInState) { uint64_t zero = 0; auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; for (const auto &map : maps) { ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); vector sizes; auto firstEntry = map->begin()->second; for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size()); for (const auto &vec : *map) { ASSERT_EQ(vec.second.size(), sizes.size()); for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]); } } } void TestCheckUpdate(const std::vector> &before, const std::vector> &after) { ASSERT_EQ(before.size(), after.size()); uint64_t sumBefore = 0, sumAfter = 0; for (size_t i = 0; i < before.size(); ++i) { ASSERT_EQ(before[i].size(), after[i].size()); for (size_t j = 0; j < before[i].size(); ++j) { // Times should never decrease ASSERT_LE(before[i][j], after[i][j]); } sumBefore += std::accumulate(before[i].begin(), before[i].end(), (uint64_t)0); sumAfter += std::accumulate(after[i].begin(), after[i].end(), (uint64_t)0); } ASSERT_LE(sumBefore, sumAfter); ASSERT_LE(sumAfter - sumBefore, NSEC_PER_SEC); } TEST_F(TimeInStateTest, AllUidUpdatedTimeInState) { uint64_t lastUpdate = 0; auto map1 = getUidsUpdatedCpuFreqTimes(&lastUpdate); ASSERT_TRUE(map1.has_value()); ASSERT_FALSE(map1->empty()); ASSERT_NE(lastUpdate, (uint64_t)0); uint64_t oldLastUpdate = lastUpdate; // Sleep briefly to trigger a context switch, ensuring we see at least one update. struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep (&ts, NULL); auto map2 = getUidsUpdatedCpuFreqTimes(&lastUpdate); ASSERT_TRUE(map2.has_value()); ASSERT_FALSE(map2->empty()); ASSERT_NE(lastUpdate, oldLastUpdate); bool someUidsExcluded = false; for (const auto &[uid, v] : *map1) { if (map2->find(uid) == map2->end()) { someUidsExcluded = true; break; } } ASSERT_TRUE(someUidsExcluded); for (const auto &[uid, newTimes] : *map2) { ASSERT_NE(map1->find(uid), map1->end()); ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid], newTimes)); } } TEST_F(TimeInStateTest, TotalAndAllUidTimeInStateConsistent) { auto allUid = getUidsCpuFreqTimes(); auto total = getTotalCpuFreqTimes(); ASSERT_TRUE(allUid.has_value() && total.has_value()); // Check the number of policies. ASSERT_EQ(allUid->at(0).size(), total->size()); for (uint32_t policyIdx = 0; policyIdx < total->size(); ++policyIdx) { std::vector totalTimes = total->at(policyIdx); uint32_t totalFreqsCount = totalTimes.size(); std::vector allUidTimes(totalFreqsCount, 0); for (auto const &[uid, uidTimes]: *allUid) { if (uid == AID_SDK_SANDBOX) continue; for (uint32_t freqIdx = 0; freqIdx < uidTimes[policyIdx].size(); ++freqIdx) { allUidTimes[std::min(freqIdx, totalFreqsCount - 1)] += uidTimes[policyIdx][freqIdx]; } } for (uint32_t freqIdx = 0; freqIdx < totalFreqsCount; ++freqIdx) { ASSERT_LE(allUidTimes[freqIdx], totalTimes[freqIdx]); } } } TEST_F(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) { uint64_t zero = 0; auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; for (const auto &map : maps) { ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); for (const auto &kv : *map) { uint32_t uid = kv.first; auto times1 = kv.second; auto times2 = getUidCpuFreqTimes(uid); ASSERT_TRUE(times2.has_value()); ASSERT_EQ(times1.size(), times2->size()); for (uint32_t i = 0; i < times1.size(); ++i) { ASSERT_EQ(times1[i].size(), (*times2)[i].size()); for (uint32_t j = 0; j < times1[i].size(); ++j) { ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC); } } } } } TEST_F(TimeInStateTest, AllUidConcurrentTimes) { uint64_t zero = 0; auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; for (const auto &map : maps) { ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); auto firstEntry = map->begin()->second; for (const auto &kv : *map) { ASSERT_EQ(kv.second.active.size(), firstEntry.active.size()); ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size()); for (size_t i = 0; i < kv.second.policy.size(); ++i) { ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size()); } } } } TEST_F(TimeInStateTest, AllUidUpdatedConcurrentTimes) { uint64_t lastUpdate = 0; auto map1 = getUidsUpdatedConcurrentTimes(&lastUpdate); ASSERT_TRUE(map1.has_value()); ASSERT_FALSE(map1->empty()); ASSERT_NE(lastUpdate, (uint64_t)0); // Sleep briefly to trigger a context switch, ensuring we see at least one update. struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep (&ts, NULL); uint64_t oldLastUpdate = lastUpdate; auto map2 = getUidsUpdatedConcurrentTimes(&lastUpdate); ASSERT_TRUE(map2.has_value()); ASSERT_FALSE(map2->empty()); ASSERT_NE(lastUpdate, oldLastUpdate); bool someUidsExcluded = false; for (const auto &[uid, v] : *map1) { if (map2->find(uid) == map2->end()) { someUidsExcluded = true; break; } } ASSERT_TRUE(someUidsExcluded); for (const auto &[uid, newTimes] : *map2) { ASSERT_NE(map1->find(uid), map1->end()); ASSERT_NO_FATAL_FAILURE(TestCheckUpdate({(*map1)[uid].active},{newTimes.active})); ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid].policy, newTimes.policy)); } } TEST_F(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) { uint64_t zero = 0; auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; for (const auto &map : maps) { ASSERT_TRUE(map.has_value()); for (const auto &kv : *map) { uint32_t uid = kv.first; auto times1 = kv.second; auto times2 = getUidConcurrentTimes(uid); ASSERT_TRUE(times2.has_value()); for (uint32_t i = 0; i < times1.active.size(); ++i) { ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC); } for (uint32_t i = 0; i < times1.policy.size(); ++i) { for (uint32_t j = 0; j < times1.policy[i].size(); ++j) { ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC); } } } } } void TestCheckDelta(uint64_t before, uint64_t after) { // Times should never decrease ASSERT_LE(before, after); // UID can't have run for more than ~1s on each CPU ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); } TEST_F(TimeInStateTest, TotalTimeInStateMonotonic) { auto before = getTotalCpuFreqTimes(); ASSERT_TRUE(before.has_value()); sleep(1); auto after = getTotalCpuFreqTimes(); ASSERT_TRUE(after.has_value()); for (uint32_t policyIdx = 0; policyIdx < after->size(); ++policyIdx) { auto timesBefore = before->at(policyIdx); auto timesAfter = after->at(policyIdx); for (uint32_t freqIdx = 0; freqIdx < timesAfter.size(); ++freqIdx) { ASSERT_NO_FATAL_FAILURE(TestCheckDelta(timesBefore[freqIdx], timesAfter[freqIdx])); } } } TEST_F(TimeInStateTest, AllUidTimeInStateMonotonic) { auto map1 = getUidsCpuFreqTimes(); ASSERT_TRUE(map1.has_value()); sleep(1); auto map2 = getUidsCpuFreqTimes(); ASSERT_TRUE(map2.has_value()); for (const auto &kv : *map1) { uint32_t uid = kv.first; auto times = kv.second; ASSERT_NE(map2->find(uid), map2->end()); for (uint32_t policy = 0; policy < times.size(); ++policy) { for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) { auto before = times[policy][freqIdx]; auto after = (*map2)[uid][policy][freqIdx]; ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); } } } } TEST_F(TimeInStateTest, AllUidConcurrentTimesMonotonic) { auto map1 = getUidsConcurrentTimes(); ASSERT_TRUE(map1.has_value()); ASSERT_FALSE(map1->empty()); sleep(1); auto map2 = getUidsConcurrentTimes(); ASSERT_TRUE(map2.has_value()); ASSERT_FALSE(map2->empty()); for (const auto &kv : *map1) { uint32_t uid = kv.first; auto times = kv.second; ASSERT_NE(map2->find(uid), map2->end()); for (uint32_t i = 0; i < times.active.size(); ++i) { auto before = times.active[i]; auto after = (*map2)[uid].active[i]; ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); } for (uint32_t policy = 0; policy < times.policy.size(); ++policy) { for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) { auto before = times.policy[policy][idx]; auto after = (*map2)[uid].policy[policy][idx]; ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); } } } } TEST_F(TimeInStateTest, AllUidTimeInStateSanityCheck) { uint64_t zero = 0; auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; for (const auto &map : maps) { ASSERT_TRUE(map.has_value()); bool foundLargeValue = false; for (const auto &kv : *map) { for (const auto &timeVec : kv.second) { for (const auto &time : timeVec) { ASSERT_LE(time, NSEC_PER_YEAR); if (time > UINT32_MAX) foundLargeValue = true; } } } // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using // uint64_t as expected, we should have some times higher than that. ASSERT_TRUE(foundLargeValue); } } TEST_F(TimeInStateTest, AllUidConcurrentTimesSanityCheck) { uint64_t zero = 0; auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; for (const auto &concurrentMap : maps) { ASSERT_TRUE(concurrentMap); bool activeFoundLargeValue = false; bool policyFoundLargeValue = false; for (const auto &kv : *concurrentMap) { for (const auto &time : kv.second.active) { ASSERT_LE(time, NSEC_PER_YEAR); if (time > UINT32_MAX) activeFoundLargeValue = true; } for (const auto &policyTimeVec : kv.second.policy) { for (const auto &time : policyTimeVec) { ASSERT_LE(time, NSEC_PER_YEAR); if (time > UINT32_MAX) policyFoundLargeValue = true; } } } // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using // uint64_t as expected, we should have some times higher than that. ASSERT_TRUE(activeFoundLargeValue); ASSERT_TRUE(policyFoundLargeValue); } } TEST_F(TimeInStateTest, AllUidConcurrentTimesFailsOnInvalidBucket) { uint32_t uid = 0; { // Find an unused UID auto map = getUidsConcurrentTimes(); ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); for (const auto &kv : *map) uid = std::max(uid, kv.first); ++uid; } android::base::unique_fd fd{ bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; ASSERT_GE(fd, 0); uint32_t nCpus = get_nprocs_conf(); uint32_t maxBucket = (nCpus - 1) / CPUS_PER_ENTRY; time_key_t key = {.uid = uid, .bucket = maxBucket + 1}; std::vector vals(nCpus); ASSERT_FALSE(writeToMapEntry(fd, &key, vals.data(), BPF_NOEXIST)); EXPECT_FALSE(getUidsConcurrentTimes().has_value()); ASSERT_FALSE(deleteMapEntry(fd, &key)); } TEST_F(TimeInStateTest, AllUidTimesConsistent) { auto tisMap = getUidsCpuFreqTimes(); ASSERT_TRUE(tisMap.has_value()); auto concurrentMap = getUidsConcurrentTimes(); ASSERT_TRUE(concurrentMap.has_value()); ASSERT_EQ(tisMap->size(), concurrentMap->size()); for (const auto &kv : *tisMap) { uint32_t uid = kv.first; auto times = kv.second; ASSERT_NE(concurrentMap->find(uid), concurrentMap->end()); auto concurrentTimes = (*concurrentMap)[uid]; ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes)); } } TEST_F(TimeInStateTest, RemoveUid) { uint32_t uid = 0; { // Find an unused UID auto times = getUidsCpuFreqTimes(); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); for (const auto &kv : *times) uid = std::max(uid, kv.first); ++uid; } { // Add a map entry for our fake UID by copying a real map entry android::base::unique_fd fd{ bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")}; ASSERT_GE(fd, 0); time_key_t k; ASSERT_FALSE(getFirstMapKey(fd, &k)); std::vector vals(get_nprocs_conf()); ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); uint32_t copiedUid = k.uid; k.uid = uid; ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); android::base::unique_fd fd2{ bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; k.uid = copiedUid; k.bucket = 0; std::vector cvals(get_nprocs_conf()); ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data())); k.uid = uid; ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST)); } auto times = getUidCpuFreqTimes(uid); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); auto concurrentTimes = getUidConcurrentTimes(0); ASSERT_TRUE(concurrentTimes.has_value()); ASSERT_FALSE(concurrentTimes->active.empty()); ASSERT_FALSE(concurrentTimes->policy.empty()); uint64_t sum = 0; for (size_t i = 0; i < times->size(); ++i) { for (auto x : (*times)[i]) sum += x; } ASSERT_GT(sum, (uint64_t)0); uint64_t activeSum = 0; for (size_t i = 0; i < concurrentTimes->active.size(); ++i) { activeSum += concurrentTimes->active[i]; } ASSERT_GT(activeSum, (uint64_t)0); ASSERT_TRUE(clearUidTimes(uid)); auto allTimes = getUidsCpuFreqTimes(); ASSERT_TRUE(allTimes.has_value()); ASSERT_FALSE(allTimes->empty()); ASSERT_EQ(allTimes->find(uid), allTimes->end()); auto allConcurrentTimes = getUidsConcurrentTimes(); ASSERT_TRUE(allConcurrentTimes.has_value()); ASSERT_FALSE(allConcurrentTimes->empty()); ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end()); } TEST_F(TimeInStateTest, GetCpuFreqs) { auto freqs = getCpuFreqs(); ASSERT_TRUE(freqs.has_value()); auto times = getUidCpuFreqTimes(0); ASSERT_TRUE(times.has_value()); ASSERT_EQ(freqs->size(), times->size()); for (size_t i = 0; i < freqs->size(); ++i) EXPECT_EQ((*freqs)[i].size(), (*times)[i].size()); } uint64_t timeNanos() { struct timespec spec; clock_gettime(CLOCK_MONOTONIC, &spec); return spec.tv_sec * 1000000000 + spec.tv_nsec; } // Keeps CPU busy with some number crunching void useCpu() { long sum = 0; for (int i = 0; i < 100000; i++) { sum *= i; } } sem_t pingsem, pongsem; void *testThread(void *) { for (int i = 0; i < 10; i++) { sem_wait(&pingsem); useCpu(); sem_post(&pongsem); } return nullptr; } TEST_F(TimeInStateTest, GetAggregatedTaskCpuFreqTimes) { uint64_t startTimeNs = timeNanos(); sem_init(&pingsem, 0, 1); sem_init(&pongsem, 0, 0); pthread_t thread; ASSERT_EQ(pthread_create(&thread, NULL, &testThread, NULL), 0); // This process may have been running for some time, so when we start tracking // CPU time, the very first switch may include the accumulated time. // Yield the remainder of this timeslice to the newly created thread. sem_wait(&pongsem); sem_post(&pingsem); pid_t tgid = getpid(); startTrackingProcessCpuTimes(tgid); pid_t tid = pthread_gettid_np(thread); startAggregatingTaskCpuTimes(tid, 42); // Play ping-pong with the other thread to ensure that both threads get // some CPU time. for (int i = 0; i < 9; i++) { sem_wait(&pongsem); useCpu(); sem_post(&pingsem); } pthread_join(thread, NULL); std::optional>>> optionalMap = getAggregatedTaskCpuFreqTimes(tgid, {0, 42}); ASSERT_TRUE(optionalMap); std::unordered_map>> map = *optionalMap; ASSERT_EQ(map.size(), 2u); uint64_t testDurationNs = timeNanos() - startTimeNs; for (auto pair : map) { uint16_t aggregationKey = pair.first; ASSERT_TRUE(aggregationKey == 0 || aggregationKey == 42); std::vector> timesInState = pair.second; uint64_t totalCpuTime = 0; for (size_t i = 0; i < timesInState.size(); i++) { for (size_t j = 0; j < timesInState[i].size(); j++) { totalCpuTime += timesInState[i][j]; } } ASSERT_GT(totalCpuTime, 0ul); ASSERT_LE(totalCpuTime, testDurationNs); } } void *forceSwitchWithUid(void *uidPtr) { if (!uidPtr) return nullptr; setuid(*(uint32_t *)uidPtr); // Sleep briefly to trigger a context switch, ensuring we see at least one update. struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep(&ts, NULL); return nullptr; } TEST_F(TimeInStateTest, SdkSandboxUid) { // Find an unused app UID and its corresponding SDK sandbox uid. uint32_t appUid = AID_APP_START, sandboxUid; { auto times = getUidsCpuFreqTimes(); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); for (const auto &kv : *times) { if (kv.first > AID_APP_END) break; appUid = std::max(appUid, kv.first); } appUid++; sandboxUid = appUid + (AID_SDK_SANDBOX_PROCESS_START - AID_APP_START); } // Create a thread to run with the fake sandbox uid. pthread_t thread; ASSERT_EQ(pthread_create(&thread, NULL, &forceSwitchWithUid, &sandboxUid), 0); pthread_join(thread, NULL); // Confirm we recorded stats for appUid and AID_SDK_SANDBOX but not sandboxUid auto allTimes = getUidsCpuFreqTimes(); ASSERT_TRUE(allTimes.has_value()); ASSERT_FALSE(allTimes->empty()); ASSERT_NE(allTimes->find(appUid), allTimes->end()); ASSERT_NE(allTimes->find(AID_SDK_SANDBOX), allTimes->end()); ASSERT_EQ(allTimes->find(sandboxUid), allTimes->end()); auto allConcurrentTimes = getUidsConcurrentTimes(); ASSERT_TRUE(allConcurrentTimes.has_value()); ASSERT_FALSE(allConcurrentTimes->empty()); ASSERT_NE(allConcurrentTimes->find(appUid), allConcurrentTimes->end()); ASSERT_NE(allConcurrentTimes->find(AID_SDK_SANDBOX), allConcurrentTimes->end()); ASSERT_EQ(allConcurrentTimes->find(sandboxUid), allConcurrentTimes->end()); ASSERT_TRUE(clearUidTimes(appUid)); } } // namespace bpf } // namespace android